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A theorem is proved which is useful in determining information regarding the location of zeros of
the partition function for lattice models with arbitrary spin. This theorem is a generalization to
higher-order spin systems of a theorem for spin-1/2 systems proved by Ruelle. The total partition
function for the system can be constructed by contracting (a generalization of the Asano contraction
procedure) a set of lower-order “partition function-like” polynomials. The theorem presented relates
information regarding the location of zeros of the lower-order polynomials to the location of zeros of
the partition function. This theorem is then used to establish the Lee-Yang unit circle theorem for

several higher-order spin models.

I. INTRODUCTION

The Yang and Lee! description of a phase transition
in terms of the distribution of zeros of the partition
function is of fundamental importance to the study of
phase transitions. Of particular interest for magnetic
systems is the location of the zeros of the partition func-
tion in the complex z = exp(pk) plane, where 8 and 2
are, respectively, the inverse temperature and the ap-
plied magnetic field. Lee and Yang' demonstrated that
for the spin-% Ising model, all the zeros of the canonical
partition function lie on the unit circle in the complex
z plane. This result was extended to the arbitrary-spin
Ising model by Griffiths, ? using a technique which trans-
formed the arbitrary-spin problem into an analog spin-4
problem. The unit circle theorem has also been extended
by Suzuki and Fisher?® to several quantum systems,
which include the anisotropic Heisenberg model for a
class of ferromagnetic coupling parameters.

Ruelle* has recently presented an approach to locating
regions of the complex z plane which contain no zeros
of the partition function. The essence of this approach
is to form appropriate “partition function-like” poly-
nomials, involving a small number of lattice sites. The
full partition function is then constructed by taking suc-
cessive Asano® contractions of the suitably chosen poly-
nomials. The surprising result is that information re-
garding the location of zeros of the several particle
polynomials implies information regarding the location
of zeros of the full partition function. Two intriguing
features of Ruelle’s approach are that it yields the Lee—
Yang unit circle theorem for the spin-3 Ising model with
little effort and also enables the investigation of non-
circular regions of the complex z plane which are free
of zeros of the partition function.

The Ruelle approach, however, has only been es-
tablished for spin-} magnetic systems or equivalently
single component lattice gases. The application of this
approach to arbitrary spin systems can take two pos-
sible forms: (1) converting the arbitrary-spin problem
into an analog spin-i problem by means of the Griffiths’
transformation? or (2) appropriately generalizing
Ruelle’'s technique to be applicable to arbitrary-spin
problems directly. Alternative (1) has been pursued by
the authors® to obtain upper bounds on critical tempera-
tures and magnetic fields for several spin-1 systems.
It is the purpose of this article to investigate alternative
(2) by presenting an appropriate generalization of
Ruelle’s approach for arbitrary-spin systems and then
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using the technique developed to establish the unit circle
theorem for several higher order spin systems.

The main theorem, which is the appropriate generali-
zation of Ruelle’s theorem to arbitrary-spin systems, is
presented in Sec. II. The proof of this theorem is based
on Ruelle’s theorem for spin-1 systems and Laguerre’s
theorem. " Section III contains the application of the main
theorem to establish the unit circle theorem for several
higher order spin models.

II. THE MAIN THEOREM

For completeness, we state without proof the relevant
theorems needed for the proof of the main theorem.

Theorem 1 (Laguerre’s Theorem?®): Let f(z) be an nth
degree polynomial such that f(z) does not vanish for all
zd C, where C is a closed circular region. ® Then the
first polar derivative of f(z) with respect to £, defined
by

filz, &) =nf(=) + (& = 2)f’(2), (1)
does not vanish for 2¢& C and £, ¢ C.
The kth polar derivative of f(z) is defined by
fk(z;gp LI Ek):(n_k+ 1)f}:-1(z;£1; DI ] Ek-1)
+(§k—2)f;_1(2;21, LECICE ] ‘Ek-1) (2)

where the prime denotes differentiation with respect to
z, The nth polar derivative, is then given by

fn(EU ey ‘E") =fn-1(z= £n;£1’ Ezy ey En-l)' (3)

By repeated application of Laguerre’s Theorem, the
following lemma is obtained.

Lemma 1: Let f(z) be an nth degree polynomial such
that f(z) does not vanish for all z4¢C, where C is a
closed circular region. Then the nth polar derivative
Sk ..., E,) does not vanish for ¢, ¢C, j=1,2,...,n.

From (2) and (3) we note that if

=5 (3) s )

then the nth polar derivative can be written as

Flby oo E)=nl 22 oln, B)a, (5)

where o(n, k) is the symmetric function consisting of
the sum of all possible products of £, £,,..., £, taken &
at a time. From (5) it immediately follows that

f(z,2,...,2)=n!f(2). (6)
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Finally, we need a lemma due to Ruelle. ¢

Lemma 2: Let A and B be closed subsets of the com-
plex plane which do not contain the origin. Suppose that
the complex polynomial

g2y, 2,)=a+bz, +cz, +dz,z, (M
does not vanish for z, § A and 2,4 B, Then

g(2)=a+dz (8)
does not vanish for z¢ ~AB.

We are now in a position to state and prove the main
theorem.

Theorem 2: Let
n n n ”n
f(2,2)=27 25 A ( )( )z"lzk2 9
142 bry \k, ) \k,) 2 *2 (9)

k=0 k=0
be a complex polynomial of degree » in each 2, and z,.
Suppose C, and C, are closed circular regions in the
complex plane such that 04 C, and 0 € C, and

flzy,2,)#0 forall 2,4 C, and 2,4 C,.
Then the polynomial

f@=3 Akk(;:) 2 (10)

does not vanish for z¢ - C,C,.

Proof: First write f(z,, z,) as a polynomial in z,,

Flo )= Bue () o (11)
where |
B, (%)= kz};l (’:‘2) Apy, 202, (12)

From (5) it follows that the nth polar derivative of
fz,,z2,) with respect to z, can be written as

Fulbas oo r bz =nl 3 ol k) By (2,)

=n!

(13)

By assumption f(z,,z,)#0 for 2, ¢ C, and 2,4 C,. There-
fore, by Lemma 1, f,(§,...,£,;2,)#0 for £,&C,, j
=1,2,...,n, and 2,4 C,. Now treat f,(£,..., &, 2,) as
a polynomial in 2z, and take the nth polar derivative with
respect to z, to obtain

Tosnlbus e v vs & Proe e 0,

= (n! )2\ Z"> G(n, kl) ‘H(n’ k3)A31‘§ (14)

n
B=0 #=0

where 7(n, k,) is the symmetric function consisting of
the sum of all products of p,, ..., p, taken k, at a time,
Again applying Lemma 1, we obtain that f,. #0 for
£;4Cy, i=1,...,n, and p,8C,, 1=1,...,n. Now,
using the Asano contraction procedure, i.e., contrac-
ting the pairs (¢,,0,), 1=1,2,...,n, as described in
Lemma 2, we obtain the function

Frinkys oo v E)

J. Math. Phys., Vol. 15, No. 11, November 1874

=(nl)? é o(n, k)A,,. (15)

But, by Lemma 2, f,., does not vanish for £,¢ ~C,C,,
k=1,2,...,n. Finally, setting £, =2z, for all &, we ob-
tain that

F@= itz Ey=2)= 5 (’,:) At (16)

does not vanish for z ¢ ~ C,C,, which completes the
proof.

The contraction defined by (9) and (10) of Theorem 2
provides an appropriate generalization to higher order
spin systems of the spin-} Asano contraction given by
('7) and (8). We now illustrate the potential usefulness of
this procedure by using Theorem 2 to establish the unit
circle theorem for several higher order spin systems.

1. APPLICATIONS

It is perhaps useful to indicate how Theorem 2 is
used to determine information about the location of
zeros of the partition function. Consider a lattice con-
sisting of N Ising spin sites, the kth site being a spin-S,
site. The %th site can then be in any of the 2S,+ 1 states
enumerated by 0,=-S5,,-S,+1,...,+85,. Split the
Hamiltonian H for the system into the interaction with
the magnetic field h, at the kth site (k=1,2,...,N) plus
the remaining interaction #

H=H{{o,) - é h,0,. 1

The canonical partition function is then given by

9@, {£hM)= T exp{-pi} 11 2 a9)
* j=0
where
z;=exp(Bh,). (19)
The quantity
a8, {zh =1 ) e, {2k W) (20)

is then a polynomial of order 25, in the variable
z{k=1,2,...,N). Now, choose (the choice is nof unique)
a set of polynomials g,({z,'*’}) such that upon taking the
generalized Asano contraction (as described in Theorem
2) of the product

r[ q“ ({zj (a)})y

& -~
one obtains the modified partition function @. The con-
tractions are of course tak?n between all pairs of param-
eters of the form (z,®, z; ™, j=1,2...N. Symbolically,
one has

i 4,2, P &8, {z,}, N). (21)

generalized
Asano contraction

If one has information regarding the zeros of the poly-
nomials q,, Theorem 2 then yields information re-
garding the zeros of the full partition function. For this
technique to be useful, one must make a judicious choice
of the ¢’s. Below, we present several examples for
which this technique is useful to establish that all the
zeros of the partition function lie on the unit circle in
the complex z plane.
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A. Unit circle theorem for a modified Ising model

In this section we consider the modified Ising
Hamiltonian

H=- Z(; Jy;0,0,— %} ®,(0,) —;} hyo;. (22)

The first term on the right-hand side of (23) is the usual
Ising interaction. In the second term, the ¢ can be
thought of as a “chemical potential” for different states
of a spin site. We also have in mind eventually setting
all #,=h. The simplest choice for the “few particle”
partition functions, i.e., the g,’s of (21), is to choose
a “pair” partition function for each pair of sites coupled
by the Ising interaction and a “single particle” partition
function to accommodate each “chemical potential”
term in (22). The “few particle” partition functions cor-
responding to this choice are conveniently written as:

i S 25 25
02y, 2)) = > 2 (Sk"'kok) (S,+‘0,>

0,=-Sp op=-S;
X exp{8J,,0,0;} szkwk ZISl " (23)
and
Sp
a(z)= T exp{o,o}z, (24)
¥ Sk

Note that the binomial coefficients (see Theorem 2) are
included in (22) but not in (24), so that upon taking the
generalized Asano contractions, we obtain the canonical
partition function, i.e.,

Q.

T1 G T1 G5
Rt i generalized
Asano contraction

To establish that the partition function Q(g, z, N) has
all zeros on the unit circle, it is sufficient to show that
the ¢,’s do not vanish if all {z,'*’} are contained within
the unit circle. This follows by the repeated application
of Theorem 2 as described above, where C, and C, are
taken to be the same closed circular region C, the ex-
terior to the unit circle in the complex plane. The
proof of this statement for the “pair” partition function
is given in the following lemma.

Lemma 3: If |2,l <1and |z,} <1, then q,(z,, z,) de-
fined by (23) does not vanish provided J,, = 0.

Proof: First define n, =5, + 0, and rewrite (23) as
G242, = exp{= BJ ;S5 1} a2 21)

28,

= (2: l) (1 + exp{BJ (n, - SI)}zk)zgk
!

ny=0
X(exp{—BJMSk}Zl)"I, (25)

Now, consider g,,(2,, z,) to be the successive contraction
with respect to z, of the product of polynomials of the
form

2S
h(zk,zl'r))zfj <28,) (1+exp{pJ,,(n, —S)}z,)

m=0 \7;
X (exp{— $ B 12,7 )" (26)
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where y=1,2,...,25,. Butif h(z,,2,'”) vanishes, then

|1+ expf= 48} 2(| ™

Izk|= ‘ —%ﬁJH +zly (27)

This expression implies that if 2=0, J,, >0, and
lz,| <1, then |2,'”| >1. We therefore conclude that if
J, =0, 12,1 <1, and {z,| <1 then k(z,, z,'"’) does not
vanish. By successive contractions with respect to
z ) of
i
28y
n Mz, z2,")
r=1

and using Theorem 2, the lemma is proved.

We now examine the zeros of the “single particle”
partition function given by (24). To complete the proof
of the unit circle theorem for the Hamiltonian (22) it
is sufficient to establish conditions for which (24) has no
zeros within the unit circle. For any example, one
could use the Schur—Cohn criterion to determine the
condition for which (24) has no zeros within the unit
circle. We will, however, only examine the zeros of
(24) for several special cases.

Case (i): If ¢,(0,)=0 for 0,=-S5,,..., +8§,, then the
Hamiltonian (22) corresponds to the usual Ising model
with arbitrary spin. For this case, we obtain
- 72841

28 1
gy(2)= "Zg Zn—= (28)

1-2z
which clearly has all zeros on the unit circle. This,
together with Lemma 3 and Theorem 2, implies that all
the zeros of the canonical partition function of the ar-
bitrary spin Ising model (J,, >0) lie on the unit circle in
the complex z plane. This resulf has previously been
established by Griffiths.?

Case (ii): We now consider the dilute Ising model with
arbitrary spin. In this model, each lattice can be either
occupied by a magnetic atom or be unoccupied. Each oc-
cupied site contributes a weighting factor exp(8u) to the
partition function, where u is the chemical potential.
For this model, we treat the integral and half-integral
spin values separately.

Case (iia): Suppose 2S, is an even integer and

_ Bt In(1+ef#), for o=0
¢*(0)—{ “, otherwise.

Then, the Hamiltonian (22) corresponds to the dilute
Ising model with arbitrary integral spin values. The
factor u represents the chemical potential for an oc-
cupied site. For this case, (24) can be written as

q,(2)=exp(Bu) zzs) 25 = eilm(Bu)
n=0 4
X {1+ exp(- Bu)z° — exp(- Bu)zS*t - 22541}, (29)

But, it follows from Theorem II of Suzuki!? that for

it >0, all the zeros of the numerator of (29) lie on the
unit circle. We therefore conclude that all the zeros of
the partition function for the dilute Ising model (J,, =0,
1 > 0) with arbitrary integral spin values lie on the unit
circle in the complex z plane.

Case (iib): Consider the dilute Ising model with half-
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integral spin values. This example is slightly com-
plicated by the “single-particle” partition function not
being a polynomial in z but in 2'/2, We can circumvent
this difficulty by introducing the parameters o =20,
where 6, =-25,,-25,+1,...,+2S,. Clearly, we have
introduced too many states for each site. However, the
extraneous states are eliminated by our choice of the
“single-particle” partition function. We have gained,
however, a convenient designation for the unoccupied
site, i.e., 0, =0. We now choose as the “single-
particle” partition function

g4(2)=exp(Bu) f) Z"+ 2%

n even

_ exp(Bu)
T 1=z

- z2(2s+1)}. (30)

{1+ exp(~ Bu)2? — exp(~ B )22

This choice corresponds to choosing ¢, such that

o, if o’ is an odd integer
if 0’/ =0
i, otherwise.

The choice of ¢,(0’)= for ¢’ an odd integer eliminates
(under contraction) all the extraneous states introduced.
Again using Theorem TI of Suzuki'® we find that g,(z) has
all zeros on the unit circle if p > 0. We therefore con-
clude that all the zeros of the partition function for the
dilute Ising model (J,, =0, u > 0) with arbitrary half-
integral spin values lie on the unit circle in the complex
z plane., We might comment that for the special case
S,=%

gy(2) =exp(Bu) (1 + exp(- ) z + 2%)
has all zeros on the unit circle for

Bu>-1In2.
This result has previously been obtained by Suzuki. ¥

Case (iii): Suppose ¢(0,) = ¢(- 0,) and

> 1)z > $(0)
8(5) > 6(S,~ 1) { ¢(%)}'

This choice corresponds to a model for which Suzuki'*

(using a different method) has established the unit circle
theorem. In this case we choose

ql(z):'zgsg a,z" (31)
where

a,=exp[B¢(n-S)].
From the above conditions, we observe that

a;=ay.; (32)
and
i=0,1,...,[s]. (33)

where [S]=1largest integer less than or equal to S. The

following lemma establishes the unit circle theorem for
this case.

;> 8y,

Lemma 4: If q,(2) satisfies (31)—(33) then all zeros of
q, lie on the unit circle in the complex z plane.

Proof: We present a proof for 25 even, a similar
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proof holds for 2S odd. The proof is accomplished by
demonstrating that there are 2S distinct solutions of
q,(2)=0 of the form z=exp(if), i.e., there are 25 dis-
tinct values of 6 satisfying ¢ (exp(i6))=0. By introducing
the coefficients

b,=%ag, (34)
b;=ag; forj=1,...,n, (35)
we obtain the identity
exp(- i560)q (exp(if)) = g(exp(i6)) + g*(exp(i6))
=2 Re g(exp(i9)) (36)
where

S
gz)= gg b2t (37)

From (36) we observe that if ¢,(exp(i6))=0, then

Re g(exp(i8))=0 or g must be purely imaginary. To com-
plete the proof we only need show that there are 2S dis-
tinct values of 6, 0 <8< 27, for which g(exp(i9)) is
purely imaginary.

From (33), (34), and (35) we observe that
b,<b,., j=0,...,n-1. (38)

[Note that for 25 even we can include the possibility

$ag < ag, and still have (38) satisfied. | Using a theorem
from Poly4 and Szegd, !* we conclude from (38) that all
the zeros of g(z) are contained within the unit circle,

{z] <1. Then using the Principle of Argument'® we ob-
serve that as z traverses the unit circle in the complex
z plane, w =g(z) winds about the point & =0 in the com-~
plex w plane S times, there being S zeros of g(z) con-
tained within the unit circle of the complex z plane. But,
each time g winds about the origin, it crosses the
imaginary axis in the w plane twice, or a total of 25
times for 0 <6< 27. Therefore, there are 2S distinct
values of 6 for which g(exp(i6)) is purely imaginary or
q,(2) has 2S roots on the unit circle.

B. Unit circle theorem for the Lebowitz~Gallavotti
model #317

We now consider the conditions for the zeros of the
partition function to lie on the unit circle in the complex
z plane for the spin-one lattice model with Hamiltonian

H=-J7},0,0,(1=0,0)-p>, 05=—h2 0, (39)
K1 k k

where 0,=1,0,~1 for 2=1,2,...,N, and the first sum
on the right-hand side is over nearest-neighbor sites.
This is model #3 introduced by Lebowitz and Gallavotti. "
The authors® have established a sufficient condition for
the zeros to lie on the unit circle by first converting the
model to an analog spin-i model using the Griffith trans-
formation.? Here, by employing the generalized Asano
contraction and Theorem 2, we establish a sufficient
condition which includes the previous result.

We choose as our “few particle” partition function for
this model, the “pair” function'®

Q20 2))= Ao+ 0,2, + 4,25, (40)
where

a,=azi+ez,+1, (41a)
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a, =€z + ez, + 1), (41b)
=2 +ez, + @, (41c)
and
o= exp(- 23J), (42a)
€= (2132 aym(_ Bu/2v). (42b)

In these expressions 2v is number of nearest-neighbor
sites (for a sqguare or cubic lattice v=dimensionality
of lattice). The 2(2»-1}/2 5 (42a) is included to correct
for the binomial coefficients appearing in Theorem 2.

In order to establish a condition for the partition func-
tion in this model to have all its zeros on the unit circle,
it is sufficient to establish that g,,(z,, z,) does not vanish

(if z, and z, are both contained within the unit circle. A
convenient method to establish this condition is to use
the Schur—Cohn criterion. For a second degree poly-
nomial, the Schur—Cohn criterion states'!:

The polynomial f(z)=a,+ @,z + a,2* has all its zeros
outside the unit circle, provided

A1=]a0|2—~ |a2|2’
A2=(A1)2_ ‘aoa1*"ala‘2*|2

are positive,

(43a)
{43b)

We now consider (40) as a polynomial in z, and
establish the condition for A, and A, to be positive, as-

suming |2,] <1. Therefore, define
z,=re", 0sr<i, (44)

The quantity A, can then be written-as

Alz(az-l)(vz-l)(rz+2%£§—si€r+l) (45)
which is positive for all 6 and ¥ {0 << 1) provided

a<l (46)
and

e<a+1. 4N

Expression (46) is equivalent to the requirement
J>0.

In similar manner one can establish that A, is positive
provided

glu, w)=a,w® + a0 + 2a,,uw + ag, (48)

is positive for (u, w) contain in the domain /), defined
by /): {~1sus<1, w=2}. In obtaining {48) we have made
the substitutions

u=cosl and w=vr+1/7,

The coefficients on (48) are given by

a,=(a+1F-¢&, (49a)
yp = 4€%, (49p)
a,=¢2{a+1)-€], (49¢)
gy =~ €, (49d)

Expression (48) isk the equation for a conic section. In
establishing that g(«,w) is positive for (u,w) contained
in/), it is sufficient to show that the conic section
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2(u, w) =0 does not intersect the domain /). After some
algebra, one can show that this condition is satisfied
for the following situations:

é<2a forl>azi, (50a)
402+ 8(1 - a+(4-8c+4 - >0 for a<i, (50b)
e<2 for a=1, (50c)

The condition (50¢). for a=1 is obtained directly from
the exact partition function [the Schur—Cohn criterion
fails for this limiting case as 4, and 4, defined in (43)
are both identically zero. ] Using the Shur—Cohn
criterion, we conclude that the model given by (39) has
all zeros of the partition function on the unit circle in
the complex z plane, provided (50) is satisfied. Ex-
pression (5) includes as special cases the results®
previously obtained for this model.

V. CONCLUDING REMARKS

In this article, we have presented a generalization to
arbitrary spin of a theorem due to Ruelle regarding the
zeros of the partition function. To illustrate the po-
tential usefulness of this theorem, we have used it to
establish the Lee—Yang unit circle theorem for several
higher-order spin models. Some of these results are
new and some reproduce results obtained by other
methods. One feature that does stand out, however, is
that once one has the basic theorem, the applications
follow with relative ease. It is hoped that this technique
will find further application, )
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A method developed in several previous papers is combined with the method of induction to derive

double dispersion relations, with Mandelstam boundary, for the class of single loop amplitudes with

four or more vertices. The spectral functions are expressed as integral representations and restrictions
on the masses and kinematic invariants for which dispersion relations are valid are found. It is also

discussed how representations for the low order single loop amplitudes can be obtained for wider

ranges of these variables.

1. INTRODUCTION

Since the late 1950’8, when it became apparent that
dispersion relations for nuclen nucleon scattering and
the nucleon electromagnetic form factor could not be
proved on the basis of the general principles of field
theory, ! there has been a flood of literature on the -
analytic properties of Feynman amplitudes. >* Because
of their relative simplicity, special attention was ini-
tially devoted to the study of the low order single loop
amplitudes in ¢3 theory. These investigations led to the
introduction of some important new concepts. In parti-
cular Karplus, Sommerfield, and Wichmann, > Nambu, 8
and Oehme’ discovered the anomalous threshold of the
triangle diagram vertex function and Mandelstam® show-
ed that, for a restricted range of masses, the box dia-
gram amplitude satisfies the famous double spectral re-
presentation that bears his name.® The single loop dia-
grams have also played a central role in the majoriza-
tion procedure, 2* which is aimed at showing that all
Feynman amplitudes contributing to a particular pro-
cess involving a given number of external particles are
regular functions in a domain whose extent is determined
by one or more of the simple diagrams.

With the advent of the Landau—Cutkosky rules!®!! it
became possible, in principle, to determine the singu-
larities of a general Feynman integral and as well to ob-
tain the discontinuities across the corresponding branch
cuts. While these Tules have been enormously useful in
studying the analytic properties of Feynman ampli-
tudes®-* and for obtaining heuristic dispersion relations
for certain processes, }*''? they are, by themselves, not
sufficient for a rigorous derivation of dispersion rela-
tions. One of the main problems is that they do not de-
termine on which Riemann sheets the singularities
lie, 3-1% and in particular which singularities lie on the
physical sheet. Further the discontinuity can in general
only be determined up to a sign factor.

To overcome these problems, Fotiadi, Froissart,
Lascoux, and Pham®® proposed in 1963 that homology
theory be used as a rigorous way of studying the analy-
tic properties of individual Feynman integrals. Again,
the investigations made using this method have been
mainly restricted to the single loop diagrams and espe-
cially the low order single loop diagrams, !’ since the
application of homology theory to more complicated dia-
grams has proved to be much more difficult. !

It is the aim of this paper to show that, within ¢?
theory, double dispersions relation with Mandelstam
boundary can, for a restricted range of masses and ki-
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nematic invariants, be proved for any Feynman ampli-
tude arising from a single loop diagram with four or
more vertices. Further we obtain integral representa-
tions for the weight functions and discuss the signifi-
cance of the above restrictions on the masses and kine-
matic invariants. The method used to derive these re-
sults is a combination of a method developed in several
previous papers'® % with the method of induction; it in-
volves the direct transformation of the Feynman param-
etrized form of the 4th order single loop amplitude

(k 24) into the required form. (Refs. 19, 20, 21, are
referred to as VF, I and P respectively.)

In Sec. 2 the first of the two Cauchy kernels needed
for the double dispersion relation is introduced by
changing the variables in the Feynman parametrized
form of the kth order single loop amplitude. The re-
strictions on the masses and kinematic invariants for
which this new form of the amplitude is valid are also
discussed in this section. The boundary of the region of
integration in the multiple integral representation de-
rived in Sec. 2 is studied in Sec. 3, and in Sec. 4 we
obtain some results necessary for reversing the orders
of integration.

In Sec. 5, the orders of some of the integrations are
reversed and the second Cauchy kernel is introduced
by changing one of the variables of integration. The
boundary of the region of integration in the resultant new
multiple integral representation is studied in Sec. 6 and
in Sec. 7 further results necessary for the reversal of
the orders of integration are obtained. ‘

Finally in Sec. 8 the required double dispersion rela-
tion for the kth order single loop amplitude is derived
by changing the orders of integration in the integral re-
presentation obtained in Sec. 5. The spectral function
is expressed in the form of a multiple integral, and it
is found that the boundary of the double spectral repre-
sentation is the usual Mandelstam boundary for the box
diagram amplitude. In this section we also discuss in
detail the implications of the restrictions on the masses
and kinematic invariants made in Sec. 2 and how these
restrictions may to a certain extent be relaxed.

2. TRANSFORMATION OF k*" ORDER SINGLE
LOOP AMPLITUDE: k>4

With plane wave states normalized, so that (p’[p)
=& (p’ -p), we define the scalar invariant amplitude T,
for the multiparticle production process in which 7 ini-
tial particles produce f= (% —¢) final particles by

1826
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(pp "‘)pll,s_ll-;pf+1’ -°°,-pb>

- _ i(21r)45“’< ip‘) (21r)-3k/22-k/z(‘lk} E‘) -llaTk-
f=1 =
(1)

Our object is to show that the contribution to 7, from the
kth order single-loop diagram shown in Fig. 1 or equi-
valently in Fig. 2 can, for a restricted range of masses
and kinematic invariants, be written as a double spec-
tral representation with Mandelstam boundary. Further
we shall obtain an integral representation for the spec-
tral function.

The k external momenta shown in Figs. 1 and 2 are
labeled by the subscripts of the adjacent internal masses
and the external mass squared of a particular external
line is, of course, just the square of the external mo-
mentum of that line. The other variables on which the
single loop amplitude depends are most conveniently de-
fined in tefms of the external momenta in Fig. 1 by

-1 2
qu=(§qr,m) (1 <i <j <k). (@)

It should be noted that when %> 6 the above kinematic
invariants are not independent but satisfy algebraic con-
straints. # Notice also that when j =i + 1 so that ¢,;% is
an external mass squared, Eq. (2) becomes an identity.
Further, with the powers 2 removed, Eq. (2) is just the
energy momentum conservation law wheni=1, j==%
(since —g,, rather than ¢,, is the ingoing 4-momentum
in Fig. 1).

We shall find, however, that many of the subsequent
expressions needed to obtain the double spectral repre-
sentations take a simpler form in terms of the asym-
metrically labelled variables shown in Fig. 2. The re-
lations between the two sets of variables can be seen
from Figs. 1 and 2, With n=Fk -2, they are as follows:

Mma=My, My=Mpqy, My=M,,

Pw0= %1y P-u=dhe Pun=de-np

m;=M;, pa;=dy P1y=dp Poy= 9jr-1),
(2<j<k~2=n)

G(k-2)(k-3)

9 (k-1)k-2)

-q

q

1k k(k-1)
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Piy=4qy (2<i<jsk-2=n), . (3

where the g4, are given in Eq. (2). We now define

Y= Cmm ) p; 2 -mP-m P (-1<i<j<n)

V=¥ Yu=1 (4)
and as well
X ==Y X2=-Y12. (5)

We shall write the dispersion relations in x, and x,
which are linearly related to the usual Mandelstam vari-
ables s and ¢.

Then, using standard Feynman rules® (see also Ref.
24 and Section 1.5 of Ref. 2) we.find that the amplitude
arising from the kth order single loop diagram shown
in Fig. 2 takes the form

Tty toos@ 1) = 7og + 5L Lua(34)
2 oon I 1672 2m_ymgmymy(n— 1)1 ™ THD
(6)
where
L.a(vyy) = 2m_ ymemmy(~ 1)"(n - 1)1
n
ng H dai[Dn(a-b @, Ay, .. ., an)]-"; (7)
Tin
n n
D (o, oy, 0, ..., @)= Zl)m,za,z+mla(1 - Zl)a,)z
i A ‘
n n n
+ iZq; 2mmyy 040, +§2mlm,y1, a,(1- Z; @) (8)
1% i Iy
and
an {(a-l) ao; aa; ceey an) ’
@420, 0520, @, 20,..., @,>0,
n
Zl) a,=1}. (9)

i

The constant g is the product of the coupling constants
acting at the vertices in Fig. 2.

We begin by generalizing the transformation used in
Sec. 2 of P. The change of variables is

lD(n-\)n

Py Poq

FIGS. 1 and 2. Single loop diagrams for the multiparticle production process in which i initial particles produce f=(k —%) = (n + 2 —i)

final particles.
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V= a.(.)l( @y + aﬂ)’
"
M=(ay+ )t (1- t/:‘{a‘),
#
M= (ayt ag) ey (2<isn), (10)

and it is shown by induction in Appendix A that the in-
verse is
1

N

ay=viv-1) (1 + iz;ﬂ\i) ,
n -1

a=v1 (1+ EK;) ,

i=1

n -1
o= 7&,(1+ Ek‘) (2 <i<m).

i=1

(11)

Further, from Appendix A, we find that the Jacobian of
the transformation is

3.y, @y Ay ..., @) (1 + ik )-(ma)v-z
3(]}, A]., eevy )\n) i=1 !

(12)

and
D"(a_l, &y, aZ’ cae ,a")E A”(V, )tl, Y] Aﬂ)

- V-l (1 + an)\‘) -2[(V‘ 1)¢()\1’ ey An)"“' d)()ﬁ: “aey 7\,.)
i=1

R UBS\CIEA R (13)
Here
n n
SRy XY= g}m%ﬁ"' ?gzmimﬂ’uh"f
n
+ hzz;zm'lm Yok tmb, (14)
PAyy .., 2)= %‘mm + {%;Zm,m,y,,x,aj _
n
+ *_EIZmom{ymx, +md, (15)
and
v(%y) = 2m_ymexd +m3 +m?d (18)

with x; given in Eq. (5). Now L,.,{v,,) takes the form

L) = 2mgmgmyma(= 0n= 01 | R o
]

” "2
xp{1+ Z::ﬂt‘)
U (O V-TOPAND WL 270 PR W)
- v w= Do) "

- P N
dr{ I X d
0 ’El £<‘<3 ‘) f1 g

" 9
% (8 52) (0= D60 -2 + 904, 0,2)

- vi(v-ox)?

(17a)

= 21 MMMy j

(17v)

for n=3. That the expression for I,.,(¥;;) in Eq. (17} is,
for n= 3, equivalent to that in Eq. (17a) can be seen

by using Eq. (4) in Egs. (14) and (15). Equation (17a)

of course holds for all z>2, but as the case n=2 was
treated in detail in I, we shall concentrate on the case
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n>3. Note also that the form of Eq. (17b) is similar to
Eq. (P-5); in fact the structures of many of the subse-
quent equations will be similar to those in P. [Equations
from P (resp. I) are denoted by placing a P~ (resp.I-)
in front of the equation number. ]

To simplify the proof of the spectral representations,
we restrict the y,,; defined in Eq. (4) to

¥4 >0 (= Isi<j<n). (18)
Equation (18) ensures that ¢(,, ..., 2) >0, ¥, ..., 2,)
>0 for A, 20, ..., 2,20; in fact the term in square brack~

ets in Eq. (17b) is always positive and I,,,(y,;) is well
defined. That the conditions in Eq. (18) can, for suffi-
ciently large internal masses, be satisfied for finite
physical values of the kinematic invariants and external
masses is shown in Sec. 8. Equation (18) in fact gives
sufficient conditions for the external masses to be sta-
ble. In general, however, for a physical single-loop
amplitude corresponding to i initial particles producing
f=(k~1) final particles, some of the kinematic invari-
ants defined in Eq. (3) can be positive and unbounded.
Thus, for finite internal masses it is possible for some
of the kinematic invariants to have physical values such
that the corresponding y,; are negative. However, it can
be seen from Eqs. (17b), (14), (15), and (16) that when
some of the ¥;; are negative, a spectral representation
for I,,,(v;;) cannot in general be proved by using real
analysis only. To obtain a representation in such cases,
for physical values of the invariants, one might then
start with the double spectral representation derived in
Sec. 8 [Eq. (67)] and attempt to do an analytic continua-
tion in the required kinematic invariants using, for ex-
ample, a generalization of the method of Ref. 25 (re-
ferred to as II). Such a procedure might be feasibie for
the pentagon diagram amplitude, at least for some spe-
cific processes, % but for a general kth order single-loop
amplitude this method does not seem practical for ob-
taining a representation for all possible configurations
involving physical invariants. Of course, some continu-
ation, namely in x; and x,, can easily be carried out
since these variables appear only in the Cauchy kernels
in Eq. (67). Further, as discussed in Sec. 8, Eq. (67)
is expected to be valid under more general conditions
[on the other variables defined in Eq. (4) as well as on
x, and ¥,] than those given in Eq. (18).

The argument leading to Eqs. (I-19) and (I-20) can now
be used to show that

N2 8 \Num 2 ("o
In+z(yi})=§( I dk’) (1;3 W)EI:%E,—”'% 5 Tﬂ
[A¥ ¥4 € i

XJ”a(yu, )‘3) sy )‘n)

— alu 3 “dx
- fg(ﬁhi% 3m"', s T)sz(ym Agsy oo vy Ay
&y

(19a)

{19b)
where
sz(yij» As» T An)
=S°§}_z lim _ﬂ_s'f.{hs
Ay €,40 8x, o N BOgr ey
dt
(g- xl)[U(g’ hlr vy An)]:”a (20)
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In Eq. (20)
UE Ay, M) =[E=RO0, L )TE=R(, L0, 0)],
(21)
w2 0 = g BT, R
+VI0g, ) —mE - m2}
(22)

and ¢(Xy, ..., A), P(N....,2,) are given in Egs. (14)
and (15). The required Cauchy kernel now appears in
Egs. (19) and (20) and to obtain a dispersion relation the
orders of integration must be reversed so that the lower
limit of the £ integration becomes a constant.

3.STUDY OF A (\)

To reverse the order of integration in Egs. (19) and
(20), we need to examine the function a(,, ..., A,) for
2 20,...,1,20. For convenience we introduce the fol-
lowing notation:

M=, .0 ), (23)
(oM =gy e 2, 0, X, e e gy O, Mgy, o0, 0,
(24)
and
i d20={020,...,2,,20,1,,,20,..., 2,
20, 2120, ..., 1,20} (25)
where i,...,l1e{1,...,n}. Then from Egs. (14) and (15),
PN =p A5 +2g;,(: MM +7,(;M) (>0),
Q) =p AF+ 2q5(AX +7i(A) (>0), (26)
where i {1, ..., n} is fixed and
py=m?,
n
q:(0) =mi(}_§m;yu7\j T Moy ) (>0),
qid)=m, (]Z:;l myyhy moym) (>0),
A=A, 7/ (M)=d(). (27

We have chosen to define g;() etc. although only g,(;})
etc. are needed in Eq. (26). The functions 7,;(;A) and
r{(;\) are determined recursively from Eq. (26) by
putting X, equal to zero and using in addition Eq. (27)
and the fact that »,(0)=m?,, »}(0)=m}.

The argument of Sec. 4 of I (or of VF) then shows that
for fixed ;A=0, k(M) increases strictly from k(;A) to
+» as )\, increases from 0 to +=, whenever 7,,(;A) =0.
Now

(N = (m-lmo)-l[‘/ 7i((N) + Vo, (47*)]14(17‘), (28)
where
g:(:N) (X
WN= T * j’;}‘(i,)\) (>0), (29)

which is positive whenever Eq. (18) holds. Thus we have
established that for fixed i {1, ..., n} and fixed ;A>0,
h{(}) increases strictly from h(;A) to +« as A, increases
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from 0 to +=., Next we shall find the inverse of £=h(})
for fixed A= 0.

4. SOLUTIONSOF U (£,) =0

In this section we study the behavior of the zeros of
U(&, A) for fixed &= h(;A) and for fixed A= 0. From
Egs. (21), (22), (26), and (27) we have, for fixed
icil,...,n,

amZmU(E, \) = a,(ENF+2by(§, M+ cy(§, ), (30)

where
af®)=4l(g;(0 - g M) - p,v(8)]
= ami{(m.yy.4; — moyes)® - v(8)],
by (&, M =2{[g;™) = i M][r, (M) = r{ W] - [,V
+giM (o)}

aij(E? _yij))\j +b,(&, 0),

M=

ki
a,(E —yy)= 4m1mj'[(m-1y-1£ ~ Mo Yo} (M1 Y05 = M Vgy)
—yijv(g)])

by(&,0)=—dmm_mo[(m_y3_y; +moy) £ +my vy

)
-

+moy .yl (31)

and v(£) is given in Eq. (16). The functions c;(£, ;A) are
determined recursively from Eq. (30) by putting A,
equal to zero and using in addition Eq. (31) and the fact
that

ci(&, 0)=amimi(£2 - 1) (1<i<n).

The argument of Sec. 5 of VF (or I) shows that for
each £>h(;A), where ;A> 0, the quadratic equation in X,

U(g, M =0,

has two real roots given by

(32)

Mg, A =[a(O)H=b,(& N =[(b (£, VP

- a&)ey(&, NIV
From Eqgs. (31), (22), (25), and (27) we see that

(33)

b (r(A), A)=—4[Vr,(A)+ Vr (W7 (X)) Vv (A2,
(34)

where [,(,A) is given in Eq. (29). Since ,(,A) >0 when
Eq. (18) holds it follows that X, {R(,), A)=0

#2; (R(A), A) and in fact for fixed A =0 A, (&, A) is the
inverse of the strictly increasing function z#(x) on 0
€A;<e, Thus 1,,(&, ) increases strictly from 0 to

+ as £ increases from h(;A) to + ©. We are now in a
position to reverse the orders of the £ and 1, integra-
tions (1 ¢ <n) in Egs. (19) and (20).

5. REVERSAL OF THE ORDER OF INTEGRATION

We begin this section by reversing the orders of the
£ and A, integrations in Eq. (20). From Secs. 3 and 4
it follows in particular that &,,(,x) > 0 for all ,» >0 and
that, for fixed A =0, A, (£, A) is the inverse of the
strictly increasing function A(X) on 0 <1, < . Thus
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* dx
sz( yij: 121) = Zm-lma —2 lim “a“
o A 300

61 4] xg
x ° _dE
-(k (51.1)) g x A(S’ Ep 1*) (35)
where
by *(l, A) d)\
ME, €, M= f o 1
) & Ala (ENT+2b,(5 A + ¢y (, M7
(36)
and a,(£), b,(¢,,2), and c,(%, ,A) can be cbtained from

Eqs. (30)—(32). Note that &(e,, \), by(£, A), A, (£, ),
and A(f, €, ,0) depend on x,, where x, is given in Eq. (5).

Now, since, for fixed , A >0, A, (&, ,,A) is the inverse
of the strictly increasing function A(;,A) on 0 <A, < =, the
argument of Sec. 6 of I (or Sec. 5 of P) can be used to
show that

el Vigs 1A) = J'

where

—X s A ]
3(121)5 xx (g 12 ) (37)

dn
’ 8 - o
X(&, ,A)=8m_mom m,v(E) L»(:, B - 5)FE, 1, AP

(38)
In Eq. (38)
F(g,m, AY=[a,(E, %) Pey(&, A)
~ 200,5(E, %,)8,(E, 1 X )B,(E, 10)
+1by(&, M) Pax(8) + [by(£, M) Pay(E)
- a,(E)a(E)cy(E, 2A)

= 16m2m3[v(£) Pey (&, M) X, — £.(5, M)y = (8, 1)),
(39)
where f,(£, ,A) are defined by
am(&fg(i; 12)~)) = {02(5: 12X)]-1(a1(£’ 12K)b2{£: 12)-)
+ {{.bl( E, 12*)}2 - al(g)cl(g, 12A’)}1 ,2{[2)2(&7 12A‘)}2
- az(g)cz(gy 123-)}1,2) (40)
and the argument of Sec. 5 of I (or of VF) shows that

(B,(£, AV - ay(E)ey(E, 122) >0,

(02(&, 1A = ay(E)cy(E, 1 22) > 0 (41)
for £ = h(;;1). The following points should now be noted.
Firstly a,,(¢, %,) given in Eq. (31) is linear in x, so that
the explicit expression for f,(£, ,,\) can easily be obtain-
ed from Eqgs. (31) and (40). Secondly, as in Sec. 6 of I
{or Sec. 5 of P) it is important to note that

e (&, LAY =0Cy(E, 1 A) >0 for £ A(0)
in order to obtain Eqs. (37)—(40). Finally

F(£, x5, 0) = 64m> mim3im3[v(£) FF(£, x,), (42)
where F(£, x,), corresponding to the usual Mandelstam
spectral function, is given in Eq. (Bl) of Appendix B
and v(£) is given in Eq. {16).

The second Cauchy kernel now appears in the expres-
sion for I .{ v,,) given by Egs. (38), (37), and (19). To
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obtain the desired double spectral representation, it re-
mains to reverse the order of the ,; (3 <i <n)and £ in-
tegrations and as well the x; and n integrations. The in-
terchange of the X, (3 €7 <n) and £ integrations can be
carried out by using the results of Secs. 3 and 4. Thus,
using the expression for I ,{(y;,) in Eq. (19a), we have

inae [ g8 4
" ° EY s %Bml

o )«-’(ty 1 ¥
XS dt !. 2 dy,
KW e, & LY

- dn  8m_mom,m,v(£)
X ——~—r=-‘—9—’—3]—,— 43
5f+((,123) =X, F(E,TI, 12X) /2 ( )

The £ and the other A, (3 €j <n, j+1{) integrations can, of
course, be reversed in a similar way, but it will be
more convenient to interchange the order of the X, and

7 integrations before this is done.

6. STUDY OF £, (£, 1,0

To reverse the order of the A; and 7 integrations in
Eq. (43), we need to examine the function f,(§, ,,A) for
0 < sa; (&, ,2) with fixed , A 20, £2h(,, ), and
i€ {3, ..., n}. First we study the behavior of f,(£, ,\) as
XA A(E, o). From Eq. (34) and the fact that 1,(;,A)
>0 when Eq. (18) holds it follows that

by(£, 122) {A;=X,,( te <0 (44)
Similarly

b€, 120) [M:x,-,(a,mx) <0 (45)
and hence from Eqs. (30) and (40) and the fact that

w(E)>0 (46)

for £ = h(,A) (= 1) it follows that £,(&, ;,A) — + © as
X; f)&i*(E, 12,-?t).

Next, from Eq. (40) we see that the derivative of
F.(E, ,A) with respect to X, is

fn_i(g’ 123-) = [4m_1mnv(§)]‘1[c2(€, ml)]-a
X (= by &, ANB,(E, AP = ay(E)ey(E, (A)P/2
= b€, AB(E, 2V T = au(E)es (& 2MF/E).

XL (&, ), (47)
where
Q,(gy ]2)-) Qi (2’12x)

L (gr 12*)*” W (48)

Qi( £ 1éh) = xg(a,‘bx - alibi) + (bibl - alici)’
Qi (&, M) =2 (ab, = 0,0,) + (bb, — @y c),

Ry, M) =2 a,®~aa,)+ 2 (a,;b
R/, M) =X Hay® = aya;) + 20 (b, = 6,0 ) + b7 - ay¢,.
(49)

2
1= @b +b % —acy,

In Eq. (49), a, has been written for a{£), ¢, for c,(£, ,A),
b, for b(&, ,\) (1=1,2,4) and a for a, (¢ -y,,) (I
=1,2).
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The term in square brackets in Eq. (47) is always
positive as can be seen as follows. From Egs. (34), (29),
and (18) and the fact that b,(£, ;,,A) is linear in £, we
have

by(&, ;20 <0 (50)

for all £> h{,,\), ;,A>0. Then from Eqs. (44) and (50)
and the fact that b,(§, ,A) is linear in A, it follows that

by(&, 1 A) <0 (51)
for 0 <, sx, (&, ,A) with fixed £2h(,A), LA 200
Similarly

b,(&, LA)<O0 (52)

for 0 s, <, (&, 12il)-

The argument of Sec. 6 of P can now be used to show
that, for fixed ,, X >0, &= h(;,0), f.(& 1o0) is strictly
increasing on 0 <i,; <, (&, ,,A) if and only if
L (£, ,,A)>0. That L,(£, ,,A) is always positive for
£2 i(5;A), 15,2 >0 can be seen from Eq. (48) and Egs.
(B7) and (B8) of Appendix B. Next we shall find the
inverse of the strictly increasing function n=71(£, ,A)
for fixed £ = h(,,A), 1, A=0.

 7.SOLUTIONSOF F (£, 7, ,0) =0

To obtain the inverse of 71=71,(£, sX), we need to study
the behavior of the zeros F(£, 7, 1,A) for fixed £. 7 and
fixed 5,A> 0. From Egs. {29) and (31) we find that

F(£m, 20 =Ay(5, A3+ 2B(§, 1, 1200, + Ci(E, M, 120),
(53)
where
At = allap(s, NP - aya)+a e+ agia,
- 20,(&, Moy 0,
By& 1, 120 =b,([ayo(, MP ~ a105) + b, 0, + byayay
= 3(&, Mby oy~ aa(§, Mbyanyy,
C (& My 120 = cy({ el &, M = ay0,) + bla, + bay
— 2y5(E, n)byb,. (54)

The functions A,(£,7) and B,(£,7,,,,A) in fact depend on
m? whereas C,(£, 1, 15,0) does not. The abbreviations
described after Eq. (49) have again been used.

As in Sec. 7 of P, we find that the discriminant of the
quadratic function of A, in Eq. (5§3) is

[By(& m, 1247‘)]2-14:(&, ﬁ)ci(ga 124N
:{{“12 (&mF - alaz}?f(% 7, 1240, (55)
where
Py(&, M, 120) = 16mim3[v(£) F(bF - a;c,)
X[M=p (& 120][N=04( 12M].  (56)
The functions p,,(£, 12,M) are given by
@3a(E, D1alE; 124M) = (85 ~ ayc,) H{by(byag; + Byay,) = a;byb,

= @y 1@y £ [Dy(&, 15, MDIE, 12 /2,
(57

where

Dy(&, 120 = cy( @y} = aya,) + bla, + bla, — 2ay,b,b,,
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Di(&, 120 = cy(0f; - azay) + bla, + bla, - 2ay,b,b,, (58)
and ay,(£, 1) given in Eq. (31) is linear in 7.

The discriminant in Eq. (55) is always nonnegative
for n=f,(& 124A), E£=h{2A), 124A> 0, since the inverse
of n=7.(, 12A) is real. That it is in fact positive can be
seen as follows.

In Sec. 7 of P we showed that
{laya (&, MF - ay(&)ax(8)} >0 (59)

for all £ h(0)=1, n>f.(£ 0). Since for 15,A> 0,

Bl32,0) = 1 and for £= h{1zA), £ul, 20 = £(£, Q) Eq. (59)
holds in particular for = h(ypA), N2 f.(£ 12,0). Further,
it is shown in Eq. (B3) of Appendix B that P(£, 7, ;5,0) is
positive for £ h(y5A), 1= 7.(&, 1250

The two real solutions of
F(E,m 50 =0 (60}
are
)‘i%(gy M 1240
=[A}(& D= ByE 1, N F{By(E, 1, 12V P
=~ AyE, MCLE 1, 2 MP). (61)

From Eqgs. (54), (48), (B7), (B8), (51), and (52) we see
that

By(& £.(&5 1200 120
= (BRI (&, 120) Y2+ By(Ry (&, 12N YL 4(E, 122) <O

(62)
so that

MalEs £u(E 1260, 1208 = 0% X5(E, FulE, 128, 120 (63)
Also ag -+

7\;%(5: T 1200) ~ XilE, 1240,

where 2, (£, 35;)) are given in Eq. (33). Thus

(&, 7, 1240} is the inverse of the strictly increasing
function f,(£, 12A) on 0<2; <, (§, 15;0), where £ is fixed
such that £2 k(;5,) and 3, A> 0. The function

Aio(E, M, 124)) Increases strictly from 0 to A, (&, 15,)) as
7 increases from f,(£, ;3 A) to + o,

8. DOUBLE SPECTRAL REPRESENTATION OF
THE kth ORDER SINGLE LOOP AMPLITUDE

The order of the X; and 7 integrations in Eq. (43) can
now be interchanged, and we find, on taking i =3, that

La(vi)=\ far ﬁx)-l fi -2
)=}, B (R0) (B sg)

5 S - at (- dn
Magd b o E=x1) 18,0 hyeg, 11 %2

Xj*s,(l."aza’" g}i 8m_1m 1M 2)(&)
i N TRE 7 e -

The results of Appendix C can be used to -interchange
the order of lim,, ,, 8/8m; and integration with respect
to £ and 1. Defining the operators

. [:]
im ——y
3V0 oM

- (69)
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9 jA"‘“'"'lz"'j")

o,=1 -7
77 €, 40 om;

dx
m — (3<j<mnm), 65
;40 Ay (69)

€

we find that

L n -1 ﬂ __8_2_)
I = I dx,| I )\) (s am
wa(Yig) j o J(H 1) \s=t Omy
0
© d ® d
XS £ J' o,
A(1332) £ x £ul,q030 TT— %2

8m_ mogmymav(£)
“ TR, mh)i”’ ’ (66)

Note that the limit €40 is now inside the £ and 7 inte-
grations and in fact O4[F(£, 7, ;,A)]"1/2 can be evaluated
as in Eq. (C1).

With the expression for I,,(y,,) given in Eqs. (19b),
(37), and (38), we can use the results of Secs. 3 and
4 to reverse the order of the A\, and ¢ integrations and
the results of Secs. 6 and 7 to interchange the order of
the A, and 7 integrations. The order of lim, ,, 8/3m?2
and the integration with respect to £ and 7 can then be
interchanged by using the results of Appendix C. Re-
peating the process, we find that

dt
5—x1

Ly(y,,) = J‘"’
1

s‘h(e) N-x OrOn1°+ 05

8m_ymgmym,
X = 67
(7,7 72 ©7
giving the required double spectral representation with
Mandelstam boundary for the single loop amplitude of
order k=n+2 (>4). In Eq. (67) f,(£)=f.(§ 0) is given
in Eq. (B2) and %2(0)=1.

From Eq. (42) it can be seen that with all the O,
operators missing (3<j<n), A~ 0and =2, Eq. (67)
is just the double spectral representation obtained for
the box diagram amplitude in Eq. (I-97). Also with only
O, appearing in Eq. (67), ;52— 2; and n=3, we see
from Eq. (C1) that Eq. (67) is just the double spectral
representation for the pentagon diagram amplitude given
in Eq. (P-64) and hence in Eq. (P-65). While it is much
more tedious to evaluate some of the higher order spec-
tral functions from Eq. (67), such calculations would
provide interesting checks on the Cutkosky rules which,
to the best of my knowledge, have only been checked
for the lowest order amplitudes (see, for example, al-
so Chap. 4, Sec. 3 of Ref. 4).

It remains to show that the conditions in Eq. (18)
under which the double spectral representation for the
kth order single-loop amplitude has been proved, can,
for sufficiently large internal masses, be satisfied for
finite physical values of the kinematic invariants and
external masses. Further we shall discuss how one can
obtain a representation for the amplitude when the con-
ditions in Eq. (18) are, at least to some extent, relaxed.
We begin by considering the box diagram amplitude. For
a particular channel reaction, the equations determining
the region in which the kinematic invariants take on
physical values (given, for example, in Ref. 8) depend
only on the kinematic invariants and external masses.
Thus, for finite physical values of the kinetic invariants
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and external masses, Eq. (18) can be satisfied provided
the internal masses are sufficiently large. To obtain a
representation for more general values of the y,,, one
can do an analytic continuation in these variables as was
done in II. While, as found there, it is rather laborious to
obtain a representation for almost all real kinematic in-
variants and for all possible mass configurations involv-
ing stable external particles, the continuation in the
kinematic invariants can readily be carried out when the
mass variables satisfy Eq. (18). Then, the representa-
tion from which the continuation is started is the double
spectral representation which contains x, and x, only

in the Cauchy kernels. Thus for the x, channel reaction,
which in Fig. 2 corresponds to n=2, p_,, (rather than

— p_11) and py, being incoming and p_;, and p,, (rather than
their negatives) being outgoing 4-momenta, the ampli-
tude has, for physical invariants, the representation
given in Eq. (I-97) and in Eq. (67) with x, = x, +i- O
[and as described earlier, with the O, operators miss-
ing 3<j<mn)and ,A—~0]. In fact, as shown in Secs. 6
and 8 of I, Eq. (I-97) holds under slightly more general
conditions on the mass variables than those given in

Eq. (18). In a similar way, for a general kth order
single-loop amplitude one would expect Eq. (67) to be
valid under more general conditions than those given in
Eq. (18); that continuation in x, and x, can easily be
carried out is of course obvious.

For the pentagon diagram amplitude, the equations
which, for a particular channel reaction, define the re-
gion in which the kinematic invariants take on physical
values again depend only on the kinematic invariants
and external masses (see, for example, Section 4.3 of
Ref. 4). Thus Eq. (18) can be satisfied for finite physi-
cal values of the kinematic invariants and external
masses provided the internal masses are sufficiently
large. It should, however, be noted that, for pentagon
diagram amplitudes associated with most physically in-
teresting production reactions involving hadrons, for
example 7N - 77N, the lowest mass intermediate parti-
cles which can be exchanged are such that complex sin-
gularities appear on the physical sheet, % even for the
smallest possible physical values of the invariants,
causing a breakdown of the double (and even single) dis-
persion relations in x, and x,. Hence one would not ex-
pect dispersion relations, over real contours, in these
variables to be valid for the total production amplitudes.
In fact, for the reaction 7N - 77N, complex singularities
are also produced by lower order contracted diagrams.?
To obtain a representation for the pentagon diagram
amplitudes when the internal masses are small, one
might attempt to generalize the method of continuation
used in II. On the basis of the work of Cook and Tarski, 2
it seems that at least a numerical study of the motion of
the singularities for specific processes is feasible.

Finally, for the kth order single-loop amplitude where
k> 6, we mentioned in Sec. 2 that the kinematic invari-
ants defined in Egs. (2) or (3) are not independent but
satisfy algebraic constraints.® These constraints, how-
ever, involve only the kinematic invariants and the ex-
ternal masses. Further the equations which, for a par-
ticular channel reaction, define the region in which the
kinematic invariants take on physical values again de-
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pend only on the kinematic invariants and the external
masses. * Thus, for finite physical values of the kine-
matic invariants and external masses, the conditions in
Eq. (18), under which the double spectral representa-
tion was proved, can be satisfied provided the internal
masses are sufficiently large. In fact, as mentioned
earlier, Eq. (67) is expected to hold under slightly
more general conditions than those given in Eq. (18).
The double (and even single) dispersion relations in

x, and #, will of course break down for sufficiently
small internal masses. In such cases the method of
analytic continuation unfortunately seems of little use
for finding a representation of the amplitude, simply
because of the increased number of singularities and
the more complicated nature of the spectral function
in Eq. (6%7).
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APPENDIX A

In this appendix we outline the method of induction
used to obtain Eqs. (10)—(17). It was shown in Sec. 2
of P that these equations hold for the case n=3 (where
n=Fk—2 and %k is the number of vertices of the single
loop amplitude). We suppose that Eqs. (6)—(17), with
the replacement n— I, hold for all 3</<n- 1 and show
that they are then valid as well for I==. The steps in
the proof are as follows.

(1) In Egs. (7)—(9) make the change of variables ¢
=(1- o) and then x;=%q; (i+1, —1<i<n-1). The
Jacobian of the transformation is ‘™!’ and in terms
of the new variables

Dn(a-h Cto, az: sy an) Emi(g- 1)2§ -2

n=1
+ §2m‘m,y,"(§ -1y,
ia

rl
+ 2m1muy1" (1 - ‘_L}x‘)(g - 1);‘2 °
"
+ 52D, 1 (%, Koy Xzs o v Xpe)- (A1)

(2) Make the change of variables given in Egs. (10)
and (11) with the replacements n—-n—~1, a;~x,. With
these replacements, the Jacobian of the transformation
is, by assumption, given in Eq. (12) and using Eq. (13),
again with the above replacements, we find that

Dn(a-l’ aO’ gy o0 vy an)
2l s n=1 n=l -1
=¢ [mn(é - 12+ iZZ)Zm,m,y,"A,(g_ 1) (1 + 27\;)
= i=1
nl -1
+ zmomnyonv-l(c - 1) (1 + E )\j>
FE
=l \-1
+2mogmy Y,y v - 1)(E ~ 1)(1 + Ex,)
=1

n1 -1
+2mym gy 2 (6= 1) (1 + EM)
e
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+ V-l (1 + "-Elxl>-z[(v— 1)¢(A1’ ey x»-l.’ 0)

=1

+ DA 0 e s Xy, 0)

- v = o] (a2)
(3) Make the change of variable

M=&—D@+§M)

with the inverse

n n-El -1
=1+ 2,031+ 200 .
= ()02
The Jacobian of the transformation is (1+ 371 2,)™* and

we find that D (o, ap, 0, .- ., @) =4,(1, A, ..., A,) a8
given in Egs. (13)—(16).

Compounding the transformations and Jacobians in
steps (1)—(3) we find that the resultant transformation
is just that given in Eq. (10) with the inverse as in
Eq. (11). Further the resultant Jacobian is as given in
Eq. (12). It is then readily seen that the new region of
integration and expression for I,,,(y,) are as given in
Eq. (17).

APPENDIX B

We collect here a number of results involving the var-
ious functions needed in the main body of the paper. It
is assumed throughout that Eq. (18) holds. From
Egs. (42) and (39)

F(&, x5) = (£ - 1)["2"]‘#(2)]["2 AL (B1)
where from Egs. (40) and (31)
Fol®)=Fu&, 0= (8= D) [(£ - )(y.11Yee T YorY-12)
+ ¥orr T Y0 (¥ag2H Vo2)
£ (842 90 +9%, T8 - )2
X (E2+ 2y 1900k +92%, + 3, - 1)V/2]. (B2)

The above functions, with a relabelling of variables,
were also defined in Egs. (I~11) and (I-12) and their
properties were discussed in detail in Sec. 8 of I and in
Sec. 4 of 1I.

Next we show that, for fixed ic{3,...,n},
P-;(E, m 121” >0 (B3)

for all &= h(;2:0), = f.(£, 120), where P,(£, 7, 15,}) is
defined in Eqs. (56), (57), and (58) and the abbreviations
described after Eq. (49) have again been used. In the
same way as Eq. (41) was established, we find that

b - a;c; >0 (B4)
for £= h(3»4A) and hence Eq. (B3) will hold if p,,(£, 15,0,
given in Eq. (57), are either complex conjugates or if

P18 12020 <SP, 1240 <fu(E, 124N (BS)

That both alternatives are in fact possible can be seen
from Appendix A of P. Thus we have the following cases
to consider.

(@) Dy(&, 12 MDY(E, 134A) <0. Then p (£, 5;M) are com-
plex conjugates and Eq. (B3) holds.
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(i) Dy(&, 1242) = 0, Di(, 12,1) = 0.. From Eqgs. (40), (57),
(58), (49) and the fact that ¢,=c,=¢;, we have

@12(€, Pia(€5 120) = o€, £i(6, 12M)
= (0% - ac ) e;' - QulE, 124MQ1(E, 1240
+({[Qi (5, NP~ (b5 - ayc ) (b} - aycy)}
x{Q1(%, 12N P - (8% - aye,) (83— age))! 2
= (0 = a,¢,) (8% = a,00)"/%(B] — apcy)'/2). (B6)

Now from Egs. (49), (31), (30), (21) and (27) it can be
shown that

Q& 1240)
=4v(Eyy0, + 2(01qs + qia)[v(E) - 7, — 7] + 4qgigir,
+ 4‘14‘117’{} >0 (B7)

for £2 h(yyA). Here we have used the abbreviation ¢,
for q,(,A) (j=1,4) etc. It is also important to note that
ri=v; (=7;) and ¢;=c¢; (= cz). Similarly

Qi (& 1240 >0 (B8)
for £2 h(3p42). Defining

coshiy = (b} ~ ac,)" 2(bF — 2,0 )V 2Qu(E, 12N, (BY)

coshiy = (b5 - apcy) 20} ~ a,c)" 2Q{ (£, 120, (B10)

we can then use the method of Appendix A of P and
Eq. (31) to show that Eq. (B5) and hence Eq. (B3) hold.

(iii) Dy(&, 13:2) <0, Dy(€, 15,M) <0. In this case we define
cos¢, (resp. cos¢,) by the right-hand side of Eq. (B9)

[resp. (B10}] and again Eq. (B5) and hence Eq. (B3) hold.

APPENDIX C

In this appendix we outline the method of interchanging
the order of lim, 103/8m% (3 <j <n) and the integrations
with respect to £ and 7, which is needed to obtain
Eq. (67) in Sec. 8. The method is very similar to that
described in Secs. 6, 7 and Appendix B of I and in
Sec. 8 of P. From Eqgs. (22), (14), and (15) we find that
(8/8m3)r(A)=O0(7,) as A, ¥ 0 and from Eqgs. (40), (31),
and (30) (8/8m3)f,(£, 151) =O(7,)) as A, + 0. Further, as
noted after Eq. (54), A,(£, 7) and B,(£, 1, 15,X) depend on
m3 whereas C,(t,7, ,,A) [EF(£, 1, 15,)] does not. Thus
the argument of Sec. 8 of P can be used to show that
I.2(¥;,) given in Eq. (64) can also be written as in
Eq. (66). In fact, it follows from Sec. 8 of P that, with
O, defined in Eq. (65),

Oa[F(E, n, 1270]-1/2

= =3/ omd[By(&, 7, 139N ~ Ay (&, MCy(E, M, 125N}
[, 7, IZSA)W%B“ 5 (2, n 2N = As(E, MC5(E, 0, 15M]

(C1)

The term in square brackets in Eq. (C1) never van-
ishes in the region of integration in Eq. (66) since, as
can be seen from Eqs. (55), (56), (59), and (B3),

{[B,(&, n, 12N ]2~ Ay(&, M)Cy(E, 1, 2,0} >0 (c2)
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for all £= h(g,A), 1= f.(£, 12;0), 12,242 0. In fact,

Os[F(£, 1, 12N /2 can be majorized by My[F(£, 1, 1550/,
where M; is a positive constant. To repeat the process
of interchanging the order of lim, 208/ 0md (3<j<n)

and the £ and 7 integrations, it is necessary in addition
to use the theorem given, for example, in Section 225

of Hobson? and the fact that O,...0,[F(£, n, ,1)]°1/2 can
be majorized by M,[F(£, 0, 5. ..,0)] /%, where M, is a
positive constant.
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The principle of compensation of dangerous diagrams (PCDD) is derived at finite temperature for
boson systems by minimizing the average number of Bogoliubov quasiparticles in the system. The
conditions obtained state that (a) the amplitude for the creation (or anmihilation) of a single
quasiparticle is zero and (b) the amplitude for the creation (or annihilation) of a pair of
quasiparticles is zero. These conditions are expanded in finite-temperature perturbation theory, using
both the density matrix and Green’s function methods. In first order the resulting equations are the
Hartree-Fock-Bogoliubov equations for a homogeneous boson system at finite temperature which can

also be obtained from a free energy variational principle.

1. INTRODUCTION

Bogoliubov! originally formulated the principle of
compensation of dangevous diagrams (PCDD) as a means
of determining the coefficients in his canonical trans-
formation to quasiparticles, which we will call bogolons.
By choosing the coefficients such that the sum of all the
vacuum to two-bogolon diagrams vanished, 2 he was able
to eliminate diagrams in the perturbation expansion of
the ground-state energy which diverged and were hence
“dangerous.” Although motivated originally by boson
systems, ® the PCDD had its first applications to super-
conductivity' where it was shown that the compensation
of the lowest order dangerous diagrams (CLODD) gave
the same result as the energy variational principle.*
Higher order corrections in the PCDD were later shown
to be important in both fermion systems® and boson
systems. ® Hence it became important to justify the
PCDD on more fundamental grounds than the vanishing
of divergent diagrams in an expansion whose conver-
gence was unknown.

In two previous papers on boson systems, "*® the
PCDD was justified on the basis of some variational
principles. In Paper I the overlap between the true
ground-state wavefunction and the bogolon vacuum state
was maximized to obtain a form of the PCDD. In Paper
II the expected number of bogolons in the true ground
state was minimized to obtain the PCDD. These papers
were extensions of previous work on fermion systems®
to boson systems.

In the present paper it is shown that the PCDD II can
be extended to finite temperatures by minimizing the
grand canonical average number of bogolons in the sys-
tem. The conditions obtained state that (a) the amplitude
for the creation (or annihilation) of a single bogolon is
zero, and (b) the amplitude for the creation (or annihila-~
tion) of a pair of bogolons is zero. These amplitudes
can then be expanded in finite-temperature perturbation
theory. The density matrix perturbation expansion?® is
developed for a temperature dependent unperturbed
Hamiltonian and perturbation, which is shown to be the
same as for a temperature independent unperturbed
Hamiltonian and perturbation. The bogolon Green’s
functions developed in II are extended to finite tempera-
ture by replacing the unperturbed single-bogolon prop-
agator at zero temperature by the unperturbed finite-
temperature propagator.' These perturbation methods
are used to expand the PCDD to first order to obtain the
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compensation of the lowest ordey dangevous diagrams
(CLODD). The resulting equations are the Hartree—
Fock—Bogoliubov (HFB) equations'? for a homogeneous
boson system at finite temperature. These equations
were apparently first derived by Tolmachev.

The HFB equations or modifications of them have been
obtained by previous authors by a variety of methods.
After the sucess of the pairing theory of superconduc-
tivity, many authors attempted similar theories of
superfluidity, with and without explicit treatment of the
zero-momentum single-particle condensate. The pair
theory of Girardeau and Arnowitt, * based on the energy
variational principle, gave a theory in which both the
single-particle condensate and pair correlations were
taken into account at zero temperature. Unfortunately,
their theory had the unphysical feature of a gap in the
energy spectrum at zero momentum. This theory was
extended to finite temperature by Wentzel, ® who used
the concept of the thermodynamically equivalent Hamil-
tonian, and by Girardeau, '® who used a free energy
variational principle. Wentzel’s theory was further de-
veloped and discussed by Luban, }” who treated the zero-
momentum condensate in a different way than by re-
placing the particle operators for the state by c-num-~
bers.® The treatment of the condensate by Valatin and
Butler!® at zero temperature, and later by Valatin® at
finite temperature, was in such a way as to eliminate
the gap in the excitation spectrum. Their approach leads
to other difficulties, as was pointed out by Kobe.® The
HFB equations for a homogeneous boson system at finite
temperature have also been obtained by the Green’s
tunction method by several authors. !3:%

In the Soviet Union, work of Bogoliubov, Zubarev,
and Tserkovnikov?? on phase transitions using a form
of the PCDD at nonzero temperature was applied by the
latter two authors to the nonideal Bose gas.?® The equa-
tions they obtained are very similar to the equations of
Tolmachev, **** who used both Green’s functions and a
free energy variational principle, as well as making a
remark about the PCDD in lowest order. The equations
he obtained are the HFB equations for a homogeneous
boson system at finite temperature. A modification of
this theory was also developed by Gelikman, 2 who did
not obtain a gap in the single-particle spectrum.

In the next section a canonical transformation, which
treats the zero momentum state exactly, is made on the
full Hamiltonian to obtain the bogolon Hamiltonian. A
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free energy, which is an upper bound to the true free
energy, is constructed in Sec. III from an unperturbed
Hamiltonian in terms of free bogolons. This free energy
is varied in Sec. IV to obtain the HFB equations for a
homogeneous boson system at nonzero temperature. In
Sec. V the PCDD is derived by minimizing the average
number of bogolons in the system at nonzero tempera~
ture. A finite temperature perturbation theory is de-
veloped in Sec. VI for the density matrix. The PCDD is
expanded to first order in Sec. VII to obtain the HFB
equations. In Sec. VIII the same set of equations is
shown to follow from the finite-temperature generaliza-
tion of the bogolon Green’s functions. Finally the con-
clusions are given in Sec. IX.

fl. BOGOLON HAMILTONIAN

The grand canonical Hamiltonian for a system of
bosons interacting with each other through the two-body
potential V ig®®

H=7(ep= Wala, +3 2 (12| V|34)alafasa,, (2.1)
where e,=k%/2m is the kinetic energy of a particle of
mass m and momentum k, and p is the chemical poten-
tial. The creation and annihilation operators, ¢ and a;,
respectively, for a particle with momentum {1)= (k;),
satisfy the usual boson commutation relations. The
matrix elements of the potential {12|V|34) in Eq. (2.1)
are symmetrized.

A partial diagonalization of the Hamiltonian can be ob-
tained by making a canonical transformation® to
Bogolivbov quasiparticles or bogolons. The canonical
transformation®’

(2.2

expresses the particle annihilation operator as a linear
combination of the bogolon creation and annihilation
operators, 'rfk and 7,, respectively. The zero-moment-
um state can be macroscopically occupied, which is.
taken into account by the c-number ¢,. There is, of
course, a gain in generality by using the ¢, since, as a
special case, it can be zero. The use of the bogolon
operators for zero momentum insures that the particle
creation and annihilation operators for zero momentum
satisfy the commutation relations. In order for the
bogolons to be bosons, the bogolon creation and annihi-~
lation operators must also satisfy boson commutation
relations. The coefficients #, and v, in the canonical
transformation must then satisfy

- 1
= o0 T T 0 V0

uf? - UE: 1, (2.3)
and also be even functions of k.

When the canonical transformation in Eq. (2.2) is
made on the Hamiltonian of Eq. (2.1), and all the terms
are normal ordered, the Hamiltonian can be written as’

H= E H}m (2.4)
*
where /,k=0,1,2,3,4and j+%2=0, 1, 2, 3, and 4. The
term H;, has j bogolon creation operators and % bogolon
annihilation operators,

Hyy=2hu(1,2,...,557 % 1, ..., 5+ k)
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XY oo VY10 Vints (2.5)

where the sum is over all momenta. The coefficient
(1,2, ...,755+1,...,j+k) is symmetric with respect
to the interchange of the first j variables, and also with
respect o the interchange of the last 2 variables. The
coefficients involve the matrix elements of the potential
and the coeificients in the canonical transformation, and
are given in Table II of I.

ili. FREE ENERGY

A free energy function is constructed in this section
which is an upper bound to the exact free energy in the
grand canonical ensemble. This variational free energy
is the sum of the free energy of the unperturbed system
and the average in the unperturbed system of the per-

turbation. That this variational free energy is an upper
bound to the exact free energy is based on an inequality

for the partition function due to Peierls, % and has
variously been attributed to Bogoliubov by Kvasnikov®®
and to Schultz®® by Valatin.* Girardeau'® gives a

brief sketch of a proof due to Miihlschlegel.* Because
of its importance and for the sake of completeness it is
given in Appéndix A. The exact free energy of the sys-
tem in the grand canonical ensemble is

F=-kyTInZ, (3.1

where kg is Boltzmann’s constant and T is the absolute
temperature. The grand partition function Z is defined
as

z=Tr[exp(- 8H)], (3.2)

since H in Eq. (2.1) contains uN, where N is the num-
ber operator, and B= (ks 7)™ .

An unperturbed temperature-dependent Hamiltonian
H, can be defined which is diagonal in the bogolon
representation,

Hy(B)=U “*'Zk) Ey¥{%, (8.3)
where the bogolon kinetic energy E,, the bogolon opera-
tors %, and U are all dependent on the temperature.
The best choice of E,, 7, and U are made later on the
basis of the variational principle. The unperturbed
Hamiltonian Hj is added to and subtracted from the
Hamiltonian H, so that the perturbation,

H'(B)=H ~ Hy(B), (3.4)

is also temperature dependent. The full Hamiltonian in
Eq. (2.1) is not temperature dependent.

The upper bound to the exact free energy, % dis-

cussed above, is (see Appendix A)
F<Fy+{HY=F,, (3.5)

which defines the variational free energy F,,.. The free
energy Fy for the unperturbed system is

Fo':—kBTln.Zg, (3. 6)
where the unperturbed grand partition function is
Zy=Tr[exp(- BH,)]. (3.7)

The unperturbed partition function can be easily evalu-
ated in the bogolon representation, and the unperturbed
free energy is thus
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FIG. 1. The graphical representation of the internal energy in
Eq. (3.14). The lines denote bogolon lines, and the vertex with
j lines in and k lines out denotes k,.

F0=U+kBTZk) In[1 - exp(- BE,)]. (3.8)

The average in the unperturbed system is defined as
(++do=2q! Trlexp(- BHy) - - ]. (3.9)

Thus the average of the perturbation H’, needed in Eq.
(3.5), is

H)o= (o= U= 2 E, (3.10)

from Eq. (3.4), where the average bogolon occupation
number is

7, =[exp(BE,) - 1] (3.11)

The variational free energy in Eq. (3.5) is obtained
by adding Egs. (3.8) and (3.10), and can be written in
the familiar form®

F\p={(H)o— TS,. (3.12)

The entropy S, for a system of noninteracting bogolons
is

So="kg 2 [(#@, + 1) In(7, + 1) — 7, In7y, ],

3

(3.13)

and is obtained by eliminating SE, in terms of %, by
means of Eq. (3.11).

The internal energy (minus p(N);, where N is the
particle number operator) in Eq. (3.12) can be evaluat-
ed in the unperturbed ensemble by substituting Eq. (2.4)
into Eq. (3.9), which gives

(H)o=Hop* 2 sl Wty + 2 ol 1,1, BT (3.14)

The average of the operators %7)%,7, was used in ob-
taining Eq. (3. 14) and is given in Eq. (B4) of Appendix
B. The internal energy in this approximation is shown
in Fig. 1, where the three terms are in one-to-one cor-
respondence with the terms in Eq. (3. 14). The lines
shown are bogolon lines and the vertices are bogolon
vertices. When the expressions for Hy,, hy;, and kg,
from Table II of I are substituted into Eq. (3. 14), the
result is

(Hyg= ~ np2+1(00| V| 00) b3

+>;/ (ep — w)vf + (o + vE)7, |
+ 9823 €00| V| - kldupw,(1+ 23,)
+ 2052 (k| VI RO)of + (4 + o) ]

+ 32 (ks = k| V| = b, Dyumi(1+ 2 )y, (1 + 20,)
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+ 23 k, 0| V1D, D)0k + (1 + vdym, J[vE + (o +v2)m, ),

(3.15)
as shown in Appendix C. Equation (3. 12) together with
Eqs. (3.14) and (3.15) are used in the following section.

IV. MINIMIZATION OF THE FREE ENERGY

The inequality in Eq. (3.5) shows that F,, in Eq.
(3.12) is an upper bound to the exact free energy.® To
obtain the least upper bound of this form, F_,, is
minimized with respect to %,, 4, v,, and ¢, subject to
the constraint of Eq. (2.3). The equations resulting
from the variation will, of course, determine these pa-
rameters. The %, in Eq. (3.11) can be considered an
unknown parameter, since it'is a function of the un-
known bogolon kinetic energy E, in Eq. (3.3).

The minimization of F,, in Eq. (3. 12) with respect
to n, gives

9F

—8—“‘£=§k+3'1 In[7, /@, + 1)]=0. 4.1)
Py
The term £, is defined as

gk:hll(k, k)+4z,>hzz(k,l),i’, k)ﬁpy (4-2)

where h,, and %y, are given in Eqs. (C2) and (C3), and
is shown graphically in Fig. 2. The differentiation of
Eq. (3.14) with respect to 7, corresponds to cutting a
bogolon line in Fig. 1 which gives Fig. 2. Equation
(4.1) implies that

7, = [exp(B&,) - 1]—1, (4.3)
so that on comparison with Eq. (3.11) the bogolon
kinetic energy E, in Eq. (3.3) is determined to be

E,=§. 4.4

When Eqs. (C2) and (C3) are substituted into Eq.
(4.2) and Eq. (4.4) is used, the bogolon energy,
E,=§= U,,(uf + UE) T Ay 2043y, (4.5)

is obtained. The single-particle energy U, is the kinetic

energy minus the chemical potential plus dressing,
Up=e5 — b+ 20 | V| 0k 6§ + £, (4.8)

where the noncondensate Hartree—Fock dressing is

fk=ZZP)(kp|V|pk)[vf+(u§+v§)ﬁ,]. 4.7
The pair potential 4, in Eq. (4.5) is

8, =k, — 2| V|00)$5 + &, (4.8)
where the noncondensate contribution

&=2 (b, = k| V[~ p, Dy, (1 + ) (4.9)

4

describes the scattering of pairs of particles with equal
but opposite momentum.

—_—— +

FIG. 2. The graphical representation of the bogolon energy in
Eq. (4.2).
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- The minimization of F_ in Eq. (3.12) with respect to
%, and v, subject to the constraint in Eq. (2. 3) gives
the condition

Un2usve + 8 (uf + 08) = 0, (4.10)

from which the #, and v, are determined. Equation
(4.10) together with Eq. (2.3) shows that the coefficients
in the canonical transformation of Eq. (2. 2) satisfy

20, = — A, (UF = 87)71/2 (4.11)
and

W+ vE = U(U% - a2)1/2, (4.12)

When these expressions are substituted into the bogolon
energy in Eqs. (4.4) and (4.5) the result is

E,=(U?-AY'/2, (4.13)

The free energy in Eq. (3.12) can also be minimized
with respect to the condensate amplitude ¢,

oF

“gur=[-u+<00] V]00)¢§ + 0 + fol2o = 0.
If the zero-momentum state is macroscopically oc-
cupied, then ¢,#0 and Eq. (4.14) determines the chemi-
cal potential to be®®

pu=(00| V|00)¢3 + f, + go.

When this expression for the chemical potential is used
in Eq. (4.13), a gap in the energy spectrum at k=0 is
obtained,

Eo= 2¢[- £(00| V| 00)]' /2, (4.16)

which was first found by Girardeau and Arnowitt.* This
gap is not physical and violates the Hugenholtz and
Pines* theorem. If the variation principle in Eq. (4.14)
is not used, the chemical potential can be chosen to
eliminate the gap. The result is the right-hand side of
Eq. (4.15) minus 2g,.

(4.14)

(4.15)

The density of particles in the unperturbed system
can be obtained by taking the average of the particle
number operator N in the unperturbed ensemble, and
dividing by the volume ©. On substituting the number
operator N into Eq. (3.9), we obtain

No/Q=d3/Q+a™ Zp) [} + (i + v})m,]. (4.17)
If (N)o/ is taken to be the density of the original sys-
tem, then ¢, can be determined. As Girardeau'® has
pointed out this condition does not follow from the varia-
tional principle since Eq. (3.5) is valid for fixed u. He
uses Eq. (4.15) to determine ¢, and then the exact
chemical potential is unknown. It may, however, be
determined approximately by using perturbation theory.

V. MINIMUM NUMBER OF BOGOLONS

The coefficients in the canonical transformation of
Eq. (2.2) can be obtained from a variational principle
other than the one of the last section. The principle
used here is an extension of the PCDD II to finite tem-
perature. The average number of bogolons in the system
is

(n) =§ e, (5.1)
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where the average is with respect to the grand canonical
ensemble. The average in the grand canonical ensemble
is defined as

(+++y=Z"Tr[exp(~BH) -+ ], (5.2)

where Z is the grand partition function in Eq. (3.2).
Since H does not depend on the coefficients in the
canonical transformation in Eq. (2.2), they enter only
through the dependence of ¥, and 7} on them.

A criterion for the choice of the coefficients in the
transformation is to minimize the average number of
bogolons in the system. With fewer bogolons present,
the bogolon interactions will not be as important and the
bogolons will behave more like an ideal gas. Then it can
be expected that the free bogolon model will be a better
approximation to the true system. Equation (2.2) can be
used to express the 7} and %, in terms of the particle
creation and annihilation operators and u,, v,, and ¢,.

When Eq. (5.1) is minimized with respect to ¢, the
result is®

M=o,

which states that the amplitude for the creation (or
annihilation) of a single bogolon is zero. In graphical
form it is shown in Fig. 3a. In the language of perturba-
tion theory, Eq. (5.3) states that the sum of all the
diagrams leading to the creation (or annihilation) of a
single bogolon is zero. This condition is the formula-
tion of the augmented PCDD for boson systems® at

finite temperatures, and is due to the exact treatment

of the zero-momentum state.

(5.3)

Minimizing Eq. (5.1) with respect to %, and v, sub-
ject to the constraint in Eq. (2.3), we obtain®

vty =0, (5.4)

which states that the amplitude for the creation (or
annihilation) of a pair of bogolons is zero. In the
language of perturbation theory, Eq. (5.4) states that
the sum of all the diagrams leading to the creation (or
annihilation) of two bogolons is zero. This condition is
the formulation of Bogoliubov’s principle of compensa-
tion of dangerous diagrams at finite temperature, and
is shown graphically in Fig. 3b.

The question arises as to the connection between the
PCDD of this section and the free energy variational
principle of the last section. The next section develops

l—>— = O
(a)
b———— = O

(b)

FIG. 3. The principle of compensation of dangerous diagrams
(PCDD) in graphical form at finite temperature: (a) creation of
a single bogolon; (b) creation of a pair of bogolons.
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a finite temperature perturbation theory which is ap-
plied in Sec. VII to show that in first order the PCDD
gives the same results as in Sec. IV.

VI. PERTURBATION THEORY

The criteria in Eqs. (5.3) and (5.4) for the coeffi-
cients in the canonical transformation cannot be used
unless they are expanded in perturbation theory. In this
section a finite temperature perturbation theory for
bogolons is developed. Since the unperturbed Hamilton-
ian Hy in Eq. (3. 3) depends on the temperature, the per-
turbation H' in Eq. (3.4) also depends on the tempera-
ture. The usual finité-temperature perturbation theory'
must therefore be somewhat modified.

The grand canonical density matrix,

p(B) = exp(~ BH), (6.1)
satisfies the Bloch equation,

- 9p(8) _

T—Hp(ﬁ)- (6.2)

The Hamiltonian H in terms of some arbitrary inverse

temperature a which will be determined later is
H=Hy(a) +H'(a), (6.3)

from Eq. (3.4). The density matrix can be written in
terms of the unperturbed Hamiltonian Hy(c) as

p(B) = exp[- BH() [W(B, ).
By substituting Eq. (6.4) into Eq. (6.2) and using Eq.
(6.3), the equation for the operator W(B, a) is

- aW(B) CY)
98

where the operator in the interaction picture for finite
temperature is

Hj(a, B)= exp(BHy( @) H'(«) expl- BHy(a)]. (6.6)

Equation (6.5) can be converted into an integral equa-
tion by integrating, and we obtain

(6.4)

= H{(a, B)W(B, a), (6.5)

W(B, &)=1- [°dB\H](a, B)W(By, a). (6.7)
On iterating Eq. (6.7), the perturbation expansion
W, )= 2 (= 1)" [ dby [ dBy -+« [ aB,
X H{(By, @)H{(By, @) + -+ H}(B,, @) (6.8)

is obtained. Now the arbitrary inverse temperature «
can be set equal to 8 and Eq. (6.4) becomes

p(B) = exp[— BHo(B)IW(B, B), (6.9)

where W(B, 8) is obtained from Eq. (6.8) with «a=p8. The
result is exactly the same as if the temperature depen-
dence of Hy(B) and H'(B) had been ignored.!® In the
following section this expansion is used to obtain a per-
turbation expansion of the PCDD.

VIl. COMPENSATION OF THE LOWEST ORDER
DANGEROUS DIAGRAMS

In this section the perturbation theory developed in
the last section is used in first order in connection with
the PCDD of Sec. V to obtain the compensation of the
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lowest ovdey dangevous diagvams (CLODD). It is shown
that the CLODD is completely equivalent to the results
obtained from the free energy variational principle in
Sec. IV.

The PCDD for the single-bogolon amplitude given in
Eq. (5.3) can be written in first order of perturbation
theory as

HiyoYorg + Ha1Yo)o=0, (7.1)

on using Eqs. (5.2), (6.9), (3.4), and (2.4). The aver-
age is defined in Eq. (3.9). The other terms in H' do
not contribute in Eq. (7.1) since the number of bogolons
created must equal the number annihilated.

When Eq. (2.5) is used in Eq. (7.1), the result is
(Y5 Yode + E) % (i’q"x?’;?’:'}’r'y&o =0. (7.2

The number of bogolons in the zero-momentum state is
given by Eq. (3.11) with k=0, which is not infinity
since E;#0 by Eq. (4.16). The average of the four
operators in Eq. (7.2) is given by Eq. (B4) for k=0.
Therefore, Eq. (7.2) becomes

hyo+2 thzl(Opp)ﬁ,, =0, (7.3)

which is shown graphically in Fig. 4a. The first term
in Fig. 4a describes the creation of a single bogolon,
and the second term describes the creation of two
bogolons and the annihilation of one.

From Table II of I the coefficient 7y, is
hyp= (- u+2;<k-k\v\oo)ukvk+zzk)<0k| Vv |k0)2

+00{ V| 00)¢&) o (g * v5), (7.4)
and the coefficient %,(0, &, &) is
ha1(0, B, B) = oty + vo) [0 | V] kO (w2 + 0f)
+(k=k| V] 00)us0,). (7.5)

When these coefficients are substituted into Eq. (7.3),
the result is

[~ 1+ (00| V|00)oh + gy +1]2¢5=0,

which is the same as Eq. (4.14). Thus the PCDD to
first order in Fig. 4a gives the same result as the
minimization of the free energy with respect to ¢, in
Sec. IV,

(7.6)

FIG. 4. Compensation of the lowest order dangerous diagrams
(CLODD) at finite temperature: (a) creation of a single bogolon;
(b} creation of a pair of bogolons.
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The PCDD for the two-bogolon amplitude given in Eq.
(5.4) can be written in first order of perturbation theory
as

HayYeVdo* H31%¥4)0=0, (7.7

on using Eqgs. (5.2), (6.9), (3.4), and (2.4). The aver-
age is defined in Eq. (3.9). The other terms in H’ do
not contribute in Eq. (7.7) because the number of
bogolons created must equal to the number annihilated.
When Eq. (2.5) is used in Eq. (7.7) the result is

? hao( Dy = DYV YeY o +,§s hay(pgrs)

(7.8)

The average values in Eq. (7. 8) are given in Eqs. (B5)
and (B6) for k#0 and in Eqs. (B7) and (B8) for k=0.
Equation (7. 8) for all k thus becomes

hZO(k; - k) + SZp; hsl(l% k: = k,p);l‘pz 0,

XY Ive Yo = 0.

(7.9)

which is shown graphically in Fig. 4b. The first term
in Fig. 4b corresponds to the creation of a pair of
bogolons, and the second to the creation of three and
the annihilation of one.

From Table II of I the coefficient (%, — &) is
aole, — ) = (e,, - w2 T (| VIpE e+ ¢%6,,o>)

1
Xy +3 2 =p| V= )y, + 800))

X (us +v8), (7.10)

and the coefficient k3, is
Shai(ps b, = by p) = Clp | V| ) + 030
= p| V|- pEaf + v]usvs
+ (k= | V|- ppYupv, 0+ o). (7.11)
When the coefficients in Eqs. (7.10) and (7.11) are sub-
stituted into Eq. (7.9) the result is
Up 20,0 + 8 (i +02) = 0, (7.12)

which is the same as Eq. (4.10). Thus the PCDD to
first order in Fig. 4b gives the same result as the
minimization of the free energy with respect to #, and
vy in Sec. 1V,

The bogolon energy E, can be determined from the
thermal average of ¥,H,7 where Hy is given in Eq.
(3.3). In lowest order of perturbation theory, the aver-
age of YkHOY,Z is its average for the unperturbed system
in Eq. (3.9), and is

<7kH07):>0/(ﬁk +1)=(Hp)y + Ey,

where the average is divided by 7, + 1 for normaliza-
tion. The average of H, in the unperturbed system

(Hodo= U+é? Em7,,

(7.13)

(7.14)

is the unperturbed internal energy.

Equation (7.13) can be compared with the result ob-~
tained from calculating (¥, H¥). In lowest order of
perturbation theory, we obtain

<7kH7g>0=H00<7kyb'>0 +ZP> hll(?yﬁ)(%z?l}’p'yk 0
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+ 2 ks parsXmr v e rido, (7. 15)

on using Eqgs. (3.9), (2.4), and (2.5). The average re-
quired are given in Egs. (B9)—(B11), which gives the
result

(VeHYDo/ 7 + 1) =(Hyy + &, (7.16)

where (H), is given in Eq. (3.14) and &, is given in Eq.
(4.2). The right-hand side of Eq. (7.16) is the internal
energy plus one excitation of energy é£,.

The unperturbed Hamiltonian in Eq. (3. 3) can be de-
termined by equating Eqs. (7.13) and (7.16). The
bogolon energy then becomes

E,=§, (7.17)

where £, is given in Eqs. (4.2) and (4.5). The unper-
turbed Hamiltonian H; and the Hamiltonian H are chosen
to have the same average value in the unperturbed en-
semble, so that U is determined by

U= (H)y - ZP; E7, (7.18)

from Eq. (7.14).

The result in Eq. (7.17) is the same as Eq. (4.4), so
the compensation of the lowest order dangerous dia-
grams (CLODD) in this section gives the same result as
the free energy variational principle in Sec. IV,

VIil. GREEN'S FUNCTION THEORY

In this section the Green’s function equations of mo-
tion for the bogolons obtained in II at zero temperature
are generalized to finite temperature, and used to ob-
tain the CLODD. The results obtained are identical to
the results of the last section and Sec. IV.

The many-time causal propagator or Green’s function
describing the annihilation of » bogolons and the crea-
tion of m bogolons with all possible processes allowed
by the Hamiltonian taking place is

Gam(1,2, . ,nt 1, . ntm)
={T{NnYe+* YaVis s ** Voumd), (8.1)

where j= (ky, ¢;) is the momentum k; and time #; asso-
ciated with bogolon j=1,2,...,»+m. The creation and
annihilation operators are all in the Heisenberg picture,
and the time-ordering operator T orders the creation
and annihilation operators with the largest time on the
left and the smallest on the right in descending order.
The average in Eq. (8.1) is the average over the grand
canonical ensemble defined in Eq. (5.2). The tempera-
ture 87 is considered only as a parameter in this ap-
proach. The Fourier transform of g,,,,, in the sense of
Eq. (7.2) of II is denoted as G,,,.

The equations of motion for g m May be obtained
exactly as for the zero-temperature case in II. The
method followed there was first used for fermion
bogolons.*® For particles a similar method was used
at zero temperature, 3 and later extended to finite
temperatures. !

The equations of motion for the finite temperature
case have the same structure as the equations at zero
temperature in Figs. 1, 2, and 3 of II. However, the
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FIG. 5. The approximate equation of motion for the single-
bogolon creation propagator. The propagators involving several
bogolons in the exact equation have been factored.

zero-temperature unperturbed propagator in Eq. (7.5)
of II is replaced by the finite-temperature unperturbed
propagator

(m t1) 2
+
w1— B, +0 wl-El—iO)’ (8.2)

where %, is the average bogolon occupation number in
Eq. (3.11) and E, is the bogolon kinetic energy in Eq.
(3.3). Equation (8. 2) is the Fourier transform of the
bogolon propagator

Gh(1, 2)=«T{n 7o

in the unperturbed system.!!

61, 2)= (21)16yy (—

(8.3)

Since the perturbation at nonzero temperatures is
given by Eq. (3.4), there is an extra perturbation of
the form

;2 [711(1, 2) = E18y5]71, (8.4)
added to the interaction Hamiltonian in II. The ap-
propriate modifications must then be made in Sec. 7 of
11,

The equation of motion for Gy (1), the Fourier trans-
form of G (1(1), is obtained from Fig. 3 of II for n=0,
m=1. The Green’s functions involving several bogolons
can be factorized into Green’s functions involving fewer
bogolons in the usual way® [cf. Eq. (8.6)] and the re-
sulting equation for G, is given in Fig. 5. Figures 5b
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and 5¢ are irreducible in the sense that they cannot be
split into two parts by cutting either one bogolon line or
two bogolon lines pointing in the same direction. All the
other diagrams in Fig. 5 are reducible. The compensa-
tion of these lowest order irreducible dangerous dia-
grams gives

2mi [ dUhly(1)G0(1'1) + 4n [ d1’d2’ d3'hi,(3'2'1")

X Gy;(32G6°%(1’'1) =0, (8.5)

where the &}, is y, multiplied by a 6 function for the
conservation of energy. When the unperturbed propaga-
tor in Eq. (8.2) is substituted into Eq. (8.5) for

G;(3’, 2') and the integral is closed in the upper-half
w;-plane, the complex conjugate of Eq. (7.3) is obtained
from which the chemical potential is determined. Equa-
tion (8.5) in this approximation is shown graphically in
Fig. 4a. When the irreducible dangerous diagrams are
compensated, then Fig. 5 is a homogeneous equation
for G, involving only the functions Gy, Gy, Gga, and
Gy.

The equation of motion for the propagator Gy, can be
obtained from Fig. 3 of II by setting n=0, m =2, When
the propagators involving several bogolons are fac-
torized into those for fewer, the equation shown in Fig.
6 is obtained. The diagrams of Figs. 6c and 6f show the
irreducible dangerous diagrams that cannot be divided
into two parts by cutting either one bogolon line or two
bogolon lines going in the same direction. The diagram
of Fig. 6f occurs because the two bogolon propagator
Gy, is factored,

G32(1234) = - i[G1,(14)G1,(23) + G1,(13)G,,(24)].  (8.6)

The lowest order irreducible dangerous diagrams can be

02 = ol — +

(b)

m

i

(d)

(f)
+ 11 : +

=

FIG. 6. The approximate equation of motion for the two-
bogolon creation propagator. The propagators involving several
bogolons in the exact equation have been factored.

20

o2 [T X + 02
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Lt = —— |0} +

{a) . . (b}

=

{0
; +
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(e) )

K Hl - ‘

[0)-3 A 20 +
(g9)

(h)

02 OIS

(k)

FIG. 7. The approximate equation of motion for the single-
bogolon propagator. The propagators involving several
bogolons in the exact equation have been factored.

compensated, which gives
am [ d1’ d2'ng(1'2')G"(1'1)Gy(2°2)
~ 127 [ d1’d2’'d3’' d4’his(4'32'1")
X 61,(3'4")G%1'1)G(2'2) =0. (8.7
When Eq. (8.2) is substituted into Eq. (8.7) for G,,(3'4"),
and the integral is closed in the upper-half w;-plane, the
complex conjugate of Eq. (7.9) is obtained which deter-

mines the coefficients , and v,. Equation (8.7) in this
approximation is shown graphically in Fig. 4b.

The equations in Fig. 6 for Gy, and Fig. 5 for Gy, are
homogeneous after the compensation of the irreducible
dangerous diagrams, and involve only the functions Gy,
Gy, Gyz, and Gyy. Together with the corresponding
homogeneous equations for G, and G they have the
trivial solution ‘

(8.8)

Therefore, in this order all the diagrams corresponding
to the dangerous processes of creation or annihilation
of a single bogolon or a pair of bogolons are zero.

Gp1=G1p= Gy =Gz =0.

The equation of motion for the single bogolon prop-
agator can be obtained from Fig. 1 of II by setting n=1,
m=1. When the higher order bogolon propagators are
factorized, the result in Fig. 7 is obtained. All the dia-
grams involving Gg;, Gy, Ggz, Or Gy are zero because
of Eq. (8.8). The only surviving diagrams are those of
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Figs. 7, 7j, and 7k. A further simplification occurs if
the bogolon energy E, is chosen such that Fig, 7j just

.cancels Fig. 7f. In other words, the bogolon energy is

chosen such that the irreducible self-energy vanishes,
which gives the condition

~2n [ d1'd2'[n,(1'2") ~ E,, 8,,,,1G°(11")
X Gy (2'2) + 8mi [ d1’d2’ d3’ d4’

X h32(13'472")G,(4'3")G(11)G4(2'2) = 0. (8.9)

When the propagator G;,(4’, 3') in the second term is
replaced by the unperturbed propagator in Eq. (8.2) and
the integrals performed, Eq. (4.2) for the bogolon en-
ergy is obtained. Equation (8. 9) in this approximation is
shown in Fig. 2.

Because of Eqs. (8.8) and (8.9), the bogolon propaga-
tor Gy (1, 2) is

G11(12)=G"12). (8.10)

In this order the replacement of the propagator G, in
Egs. (8.5), (8.7), and (8.9) by G° involves no approxi-
mation. The bogolon kinetic energy, the chemical
potential, and the coefficients #, and v, are all deter-
mined from these three equations.

Therefore, the finite temperature Green’s function
approach for the compensation of the lowest order
dangerous diagrams gives the same result as obtained
in Secs. VII and IV. It can be extended to higher-order
dangerous diagrams, but this will not be done here.

IX. CONCLUSION

In this paper the principle of compensation of dan-
gerous diagrams (PCDD) proposed by Bogoliubovl'z is
generalized to nonzero temperature. The average num-
ber of bogolons in the system is minimized, which
should make the free bogolon model a better approxi-
mation to the true system. The result of this variational
principle is the vanishing of the amplitudes describing
the creation or annihilation of a pair of bogolons or
a single bogolon. In first order of finite-temperature
perturbation theory, 10 the compensation of the lowest
order dangerous diagrams (CLODD) is identical with
the equations obtained from a free energy variational
principle."‘ This result is the finite temperature gen-
eralization of the result that at zero temperature the
CLODD was derived from the Rayleigh—Ritz énergy
variational principle.’

The compensation of dangerous diagrams to higher
orders would give results differing from the free en-
ergy variational principle. Since the free energy varia-
tional principle gives only an upper bound, a free ener-
gy closer to the exact one could be obtained. In the case
of the charged Bose gas at zero temperature, the com-
pensation of dangerous diagrams to second order was
shown to be important in eliminating divergences aris-
ing in the lower order approximations. 8 At finite tem-
perature it would also be expected that the second order
dangerous diagrams would be important.

The extension to finite temperatures of the PCDD I in
which the overlap between the true ground state vector
and the bogolon vacuum state was maximized does not
seem to be generalizable to nonzero temperatures.
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The methods used in this paper are of course applica-
ble to fermion systems with only minor modifications.
Since in fermion systems there is no zero-momentum
condensate, all the terms involving ¢ would be zero.
There are no diagrams involving the creation (or annihi-
lation) of only a single fermion bogolon. The criterion
of minimizing the average number of bogolons in the
system gives the condition that the amplitude for the
creation (or annihilation) of a pair of bogolons is zero.
When expanded to first order in perturbation theory to
obtain the CLODD, the HFB equations'? for a supercon-
ductor at finite temperature are obtained, %2+
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APPENDIX A: UPPER BOUND FOR THE FREE
ENERGY

An inequality satisfied by the grand partition function
Z in Eq. (3.2) was proved by Peierls, %

Zz Zﬂ: exP[_ B(q’m Hén)], (Al)
where the set of functions {<I>,l} is orthonormal, but not
necessarily complete.®” The Hamiltonian H is broken
into an unperturbed part H, in Eq. (3. 3) and a perturba-
tion H' in Eq. (3.4). The states {$,} are taken to be the
eigenstates of H, with eigenvalues {E%}. Then Eq. (A1)
can be written as

Z>Z,Z wyexpl- B(2,, H'®,)] - (A2)
where w,= Z;! exp(~ BE?) and Z, is defined in Eq. (3.7).
On using the lemma proved by Huang®’ that the average
of a function with positive second derivative is greater
than the function of the average, we have

Z > Zy exp(= BH)o). (A3)

When this inequality is substituted into Eq. (3.1), the
inequality in Eq. (3.5) is obtained.’

A very thorough review of variational methods in
classical and quantum statistical mechanics has recent-
ly been published by Girardeau and Mazo.3® They refer
to the inequality of Eq. (3.5) as the Gibbs—Bogoliubov

inequality, since its classical form was originally
proved by Gibbs.

APPENDIX B: AVERAGES OF OPERATORS

The averages of various operators in the unperturbed
ensemble that are required throughout the paper are
given here. The average of the bogolon number opera-
tor Y;Yk is obtained by using the average defined in Eq.
(3.9). The result given in Eq. (3.11) is obtained from

21nZ,

7= (W)=~ === . B1
(3 k k>0 B(BEk) ( )
The average of the number operator squared is
102
72) = Ty ey Zyd°Z,
<Vk>o (7k7k7k7k>o 8(BE,)? ’ (B2)
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which reduces to

(nD,= 2nt+m,. (B3)
The relative variance in the number of bogolons in the
state k is thus of order one.

By using the above method and the boson commuta-
tion relations, it can be shown that

nyn, for K#p,

Tt _
<7k7p7p7k>0—{2,—1§ for k=p, (B4)

which is used in Eq. (3.14). In Eq. (7.8) the averages
for k#0,

<7;7rp Yi¥erdo = MaTop( Oy + 8, L) (B5)
and
Tty for p#k, —k,
YYo= T, for p=Kk, (B6)

Z'ﬁ,ﬁfk for p=-Kk,

are needed, with the others being zero by momentum
conservation. For k=0 the averages needed in Eq.
(7.8) are :

(¥ veve) =27 (BN

and
(2@ for p=0,

<7$7373mm>o={6ﬁ§ * for p=0. (B8)
In calculating the bogolon energy in Eq. (7.15) the
average of the four operators

N VAl +1) for k+p,
<7'”’7’7’D°‘§ (2, + )@@ +1) for k=p (B9)

is required. It is also necessary to have the average of
the six operators for k+#p, q,

+ot _ ngn,(m, +1) for p#q,
CRA A AR {Zﬁp(ﬁk 1) for p=q, (B10)
and for k=p,
A : - n(2m, + 1), + 1) for k#q,
<7"Y’°7“y“y"yf:>° §Zﬁk(3ﬁk +2)(m, +1) for k=q, (B11)

in Eq. (7.15).

APPENDIX C: INTERNAL ENERGY

The 'exp;‘ession for the internal energy in Eq. (3.14)
is evaluated here. From Table II of I the internal ener-
gy at absolute zero is

Hoo== 19§+ 3 (e — 1)k + (00| V| 00y
+ 982 (00| V|~ ks, + 20555 Ok | V| k)0
+325 (k= k| V] =5, Pty
+ 23 ep | V| plyofes. €1

The coefficient 7,,(%, k) is the bogolon kinetic energy at
absolute zero, and is

uall, B) = (e,, -+ 23 e | VIpR03 + 5,00)

X (uf + u8) + (2; (b, =p|V|=F, )
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X (upv,+ 8,4 ¢§)> 2040y, (C2)

from Table II of 1. The coefficient 75, in Eq. (3.14)
describes the scattering of bogolons and can also be ob-
tained from Table II of I:

2hap(kppk) = kp | V | pR) (20 + v202)
+ k= p| V|- pE)uv? + ubvh)
+ 2k — k| V|~ pp)u,v,upvy. (C3)

When Egs. (C1)—(C3) are substituted into Eq. (3.14) and
combined, the expression for (H), in Eq. (3.15) is
obtained.

The effect of the last two terms in Eq. (3.14) is to
make the replacements

UV ~ UpTp(1 + 2, (C4)
-and
v~ vkt (v + o)), (C5)

in the ground-state energy Hy, in Eq. (C1). These re-
placements are equivalent to replacing the unperturbed
ground-state averages of g,a., and a;a,, by their unper-
turbed thermal averages in Eq. (3.9) for k=#0.
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It is shown that A[n,, n.y, Ny g, N1 the arrangement degeneracy arising when ¢
indistinguishable particles are placed on a one-dimensional lattice of N equivalent compartments so
that n,;, occupied nearest neighbors, n ,, next nearest neighbors of the 10l-type, and n,;; next
nearest neighbors of the 111-type are created, is given by A[n ), nig 11y, ¢, NJ

=[N-2q+n; +2 (4‘”11 -1
q-nyy - Moy 101

q-nu ny -1y The normalization and first moment of the next
711~ My

nearest neighbor density are determined. Similar results for the vacant next nearest neighbor

degeneracy are also presented.

I. INTRODUCTION

The present paper is concerned with the development
of an expression which will describe, for simple parti-
cles on a one-dimensional lattice, the degeneracy of
those arrangements containing a prescribed number of
occupied nearest and next nearest pairs. We will couch
the following discussion in terms of the vacancy and
occupation of lattice sites. Obviously, the results are
applicable to any binary variable such as magnetic spin
or A—B atoms in a binary alloy.

For purposes of the present discussion we will consi-
der that there are two types of occupied next nearest
neighbors: those with no intervening particle, which we
will refer to as the 101-type (see Fig. 1A) and those in
which an intervening particle is present, designated the
111-type (see Fig. 1B). The number of 101 next nearest
neighbor pairs in an arrangement is »,; and #n,,;, denotes
the number of 111 -type occupied next nearest neighbors
in a single arrangement. Thus we consider the situation
in which E,, the interaction energy, can be written

E;=n,; Vi1 +1101Vier 7111 Vi, (1)

where n,, is the number of occupied nearest neighbor
pairs on the arrangement and V,,, V,,, and V;, are the
appropriate energies of interaction. This expression for
the interaction energy does not preclude the special case
where V5, = V5.

Specifically, in the present paper we seek to deter-
mine the multiplicity of those states characterized by
M1, Mo, and ny;,, that is, we wish to calculate Alxn,,,
%01, M1, 9, NI, the number of independent ways of

B oloto o otototo

FIG. 1. A, This figure shows two next nearest neighbors of the
101-type. Two nearest neighbor pairs are also shown. B,
Three next nearest neighbors of the 111-type are created from
five occupied nearest neighbor pairs.
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arranging ¢ indistinguishable particles on a one-dimen-
sional space of N equivalent sites so that »,, occupied
nearest neighbor pairs are created together with %,y
next nearest neighbor pairs of the 101-type and #;,, next
nearest neighbor pairs of the 111-type.

2. DETERMINATION OF A/n,,, n1o1, 111, G, NI

When ¢ indistinguishable particles are arranged on a
one-dimensional lattice of N equivalent sites to form
N5 Mio1s and my,; pairs of nearest and next nearest
neighbors there are always q —#»,, —n,, “units” formed
(see Fig. 2). Here, we define such “units” to consist of

(1) a sequence of one or more occupied sites in which
each occupied site is separated from its occupied
neighbors by at most a single vacancy;

(2) two vacant sites (if needed) at one end of the
sequence to separate the “unit” from other “units”
on a particular arrangement.

Thus a “unit” is a contiguous sequence of nearest
neighbor and/or next nearest neighbor pairs separated

< - NT W 3 ,
io o ototofoto ifotoil x |x
- AN =] 3 ~
10 O 01010 xX{O10 X
Euil SRS Myl Y -4 -F- -4 |-
7 g U e g =t - e 1
x 0. .]Jo0} . (912191919 | ili010/f*
e ot N - - TNF W1 =—=F+-1---F-- re=4--=
o] o oi-oj 010 _i4x[x pO10!
r=r - IF =} -]~ --
x (6] 8] [ojo1ototol |
cF-—Fo - A NFF 13-
x| x [S] T ToYofototo] 1 Ho el

FIG. 2. For the situation in this figure, N=15, ¢=9, n;=5,
nig1 =2, and nyy4 =3, we see that

<N—2q+"11+2>_(4)_6

q-ny — iy 2

reflects the fact that there are two “units”, which we assume
initially to be indistinguishable, and two indistinguishable,

permutable vacancies (indicated by x’s); these “units” and va-
cancies may be made to form six independent arrangements.

1845



1846 R.B. McQuistan: Exact next nearest neighbor degeneracy 1846

[y ':}N"m%'_ <1t ta =TT ar

[RpafiS ORI il NN P

-

L - -1

FIG. 3. In this figure we show that the separations within and
between “units” may be interchanged to form new arrangements
while conserving the number of ‘“units” as well as g,n4; and
7401 We choose the third arrangement shown in Fig. 2. The
single vacancies, of which there are two within the “units,”
may be permuted with the double vacancy within the ‘anits” in

()
7401 2

ways, Next nearest neighbors of the 101-type representing the
number of separations consisting of a single vacancy are indi-
cated by ~ and the other kind(s) of separations consisting of
two or more contiguous vacancies are represented by —.

from other “units” by two vacant sites at one end which
serve to terminate the “unit” and isolate it from the rest
of the particles on the array.

The reason there are g —n,; —n,, “units” is that there
are g — 1 separations between the ¢ particles on an
array; n,, of these separations are between occupied
nearest neighbors and »,,, separations are between next
nearest neighbor pairs of the 101-type. Consequently,
there are ¢ =1 —n,;, —n,, separations which are neither
between nearest neighbor nor next nearest neighbor

T - - T
x 3 o ololo]o]oi 0 1o}l x
v . T
X|O 010 _q_ o b
x[o]| [o]o]eleleil [o]o! ofx
xlo]o]o]o]o; o o 10| Oif %
x[fojojolo o o ©ojo: ofx
¥ Foda] -J- v v
xljojojofojoil [©i0: o o |x

FIG. 4. In this figure we have selected the third arrangement
in Fig. 2. There are nyy — 74y =2 groups consisting of two or
more contiguous particles., We initially consider these groups
to be indistinguishable from one another. There are q—2n;
+my¢ =2 indistinguishable groups consisting of exactly of a
single particle. These two groups may be arranged in

q—nyy _{4\_ 6
gy =Ny 2
independent ways shown in this figure. The single particles are

indicated by arrows and the groups consisting of two or more
contiguous particles are surrounded by dashed boxes.
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pairs. Such separations are therefore composed of two
or more vacancies and therefore between “units.” If
there are g —1 —n,;, —n,, of these separations between
“units” there must be ¢ —n,; —n;, “units.” We shall
assume initially that these units are identical (indistin-
guishable from one another) regardless of their com-
position and/or configuration.

These “units” can be permuted with some of the
vacancies to form additional independent arrangements
(see Fig. 2). Not all of the vacancies can be so used,
however; some must be utilized to form n,, pairs and
2[g =y =5, — 1] vacancies are required to separate the
“units” from other “units” (One of the “units” at the end
of the array does not need two vacancies to separate it
from the other “units”). There are available for permut-
ing with the “units” N —gq —n,o; —2[g =93 ~ 15, — 1]
=N -3q +2n,, +n,, +2 indistinguishable vacancies. Thus
there are a total of [q =7, —n,0,] +[N =3 +2ny, +n,,,
+2]=N-2q +#u,, +2 objects which may be permuted to
form

N=2q +n,; +2 N-2q +n;; +2
(2)

q =Ny =M1 T\N=-3q +2n, +750; +2

independent arrangements.

Initially we have assumed the “units” to be indistin-
guishable; obviously this is not the case. To determine
Alny,, Nyo1s Min1s 9, N] we must determine the number of
ways that the “units” can be created from the particles
and arrangements present on the array. Such a deter-
mination must be consistent with the constraints imposed
by the requirement of a prescribed number of nearest
and next nearest neighbor pairs.

x|o o] 0103031010 o100 |x
x|o o] 0{0j0t0 ototo|x
x|o o ototo ofojoto|x
xfo] fo oto 0{ofoio10|x

FIG. 5. In this figure we again consider the third arrangement
shown in Fig. 2. We had assumed, in connection with Eq. 4
and Fig. 4, that the groups containing two or more contiguous
particles were indistinguishable from each other. Such an as-
sumption must be corrected by recognizing that the nearest
neighbor pairs may be moved around within and between ‘“units”
to form independent arrangements while preserving the number
of nearest neighbors and next nearest neighbors of the 111-
type. This may be done in

(”11‘ 1):(4 ):4

7114 3

ways for the situation depicted in the third drawing of the Fig.
2. The nearest neighbor pairs are shown as a short horizontal

line and the next nearest neighbors of the 111-type are repre-
sented by r or «.
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We must now examine the number of ways in which the
“units” may be constituted from the particles and the
pairs of neighbors. The g —n;;, —n,, “units” may be
created in different ways by the following processes:

(1) permuting the separations (between contiguous
groups of particles) which consist of exactly one
vacancy with those separations consisting of two or
more contiguous vacancies (Fig. 3);

(2) permuting the single particles (separated from
other particles by at least one vacancy) with the
groups (indistinguishable) consisting of two or
more contiguous particles (Fig. 4);

(3) constructing all the possible configurations involv-
ing the prescribed number of next nearest neigh-
bors of the 111-type from the prescribed number
of nearest neighbor pairs (Fig. 5).

Each of the three processes described above can lead

to factors reflecting the creation of arrangements which
conserve the number of ‘“units” as required by Eq. 2

but in which the composition and/or configuration of the
“units” is different. We now discuss each process in
more detail.

(1) In Fig. 3 we observe that because the number of
“units” is conserved, the number of separations between
the units, ¢ — 1 —»,; —n,,, is also conserved. These
separations may be permuted with the prescribed num-
ber of next nearest neighbor pairs, of the 101-type
thereby constructing new kinds of “units” without violat-
ing the constraints imposed by the stipulation of #,,,
01y M1115 g, N or the number of “units.” There are a
total of [ ~1 =7y, 1101 +7y6,=[g =1 —#%,,] of such
separations and because the 101-type separations are
indistinguishable from one another, as are the separa-
tions between the “units,” these kinds of separations
may be arranged in

q-ny =1 qg-ny~1

(3)

Ni01 g=1=-ny-ny

independent ways.

Equation 3 indicates that the number of next nearest
neighbor pairs of the 101 -type cannot exceed the number
of separations (between the particles) which are not in-
volved in nearest neighbor pairs.

(2) In Fig. 4 we note that there are always g —-#n,,
groups composed of one or more contiguous particles.
Each group is separated from other groups by one or
more contiguous vacancies. There are always g —n,, of
such groups because there are a total of ¢ —»,, —1 sepa-
rations between the particles which are nof involved in
nearest neighbor pairs.

Now the ¢ —n;; groups may be considered to be com-
posed of groups consisting of two or more contiguous
particles and another group consisting of single parti-
cles. Of the former kind there are n,, —n;,; and of the
latter (¢ —n,,] = [ny, — 7] =g = 2ny, +711,]. Each mem-
ber of these two groups is indistinguishable from other
members in the same group. Thus the g —n;; groups
may be permuted in
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q-ny q—=nn

= (4)
nyy =nyyyf \g —2ny,

independent ways without changing the specified vari-
ables of the situation.

(3) Of course the groups consisting of two or more
particles discussed in (2) above are not really indistin-
guishable by virtue of the fact that some of the groups
may contain two contiguous particles, some may contain
three contiguous particles, ete. It is possible to shift a
particle from one such group to another to form addi-
tional independent arrangements without altering the
total number of nearest neighbors and/or the number of
111-type next nearest neighbors (see Fig. 5). To deter-
mine the factor describing these changes we observe
that between the n,;, nearest neighbor pairs there are
n,, —1 separations. Of these #,,, constitute indistin-
guishable next nearest neighbor pairs of the 111-type
and n,; —n;; —1 do not. These may be permuted in

ny, -1

= (5)

LOTT 7y =Ny — 1

ny =1

ways to form independent arrangements which satisfy
the stipulated constraints on the enumeration process.
Equation 5 describes the fact that the number of 111-
type next nearest neighbor pairs on an arrangement can-
not exceed the number of separations between nearest
neighbor pairs.

Each one of the factors represented by Eqs. 3, 4, and
5 increase the multiplicity of the arrangement of the
“units” with the vacancies described in Eq. 2. Thus

A[nu; o1 Man1y 4, N]

N-2q+n, +2\g-n;, -1 q—nn =1
— ¢ (6)

q — Ny =Ny 01 211 — LOTT

3. NORMALIZATION

If Eq. 6 is summed over all possible values of n,, and
n,,, the result should agree with the results’ of a pre-
vious determination of the degeneracy of nearest neigh-
bor pairs. As we have discussed in connection with Eqs.
3 and 5 the maximum number of next nearest neighbor
pairs of the 101-type on an arrangement cannot exceed
the number of separations not associated with nearest
neighbor pairs, i.e.,

Osmpy<qg-m;~1, (7

and the maximum number of next nearest neighbor pairs
of the 111 -type on an arrangement cannot be greater
than one less than the number of nearest neighbor pairs,
i.e.,

0< ny, <ny, ~1. (8)

By the Vandermonde theorem? the sum
a%-l ni-l (N_Zq +ny, +2) q—ny =N/ g—-ny \/n,; -1
n101°0 M0\ g —=7y; =My Ri01 11~ ”111) M )

=(N—q +1Xq—1) ©)
q =Ny /\

If Eq. 9 is summed over all possible values of the num-
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ber of next nearest neighbors the result is just (¥).

4. DETERMINATION OF A/ngo, No10. Nooo, 9 NJ

By reasoning similar to that employed in the previous
section, one can determine the degeneracy of those
states specified by »ny, vacant nearest neighbor pairs,
g0 Vacant next nearest neighbor pairs of the 010-type
and 7y, vacant next nearest neighbor pairs of the 000-
type. However, the desired result can more readily be
obtained by means of the following transformations:

q— N- q,
(TR Y]
301 — Mo105

7111 — Pooo-
Then Eq. 6 becomes

A[nom No105 Mooos s N]

_ 29 = N+2 +n4 \(N=g.=ng - —q —7g noO—l
N =g —ngy —=Ngy0 Mo10 Moo = Mooo Mo00
5. FIRST MOMENT

The ensemble average number of next nearest neigh-
bor pairs (n,) =4 +n5,) ="y, +{n;;,) can be deter-
mined as follows:

(10)

(aor)

a-nn-l nyy= -1

-la-l
2. Nyo; Alng,, 7 n N
:C]\) n1g1=0 ,,§1_0 "121:1'=0 100 Al Moys 7ans, g, N (11)
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_4dlg-1XN-gq)
T NWN-1)

and

<”11>

N\L gt CTutay-l
=(q> "f?ﬂ "mzl:"" "1121;0 mu Alny, i1y My 4, N
_alg-1)g-2) (12)
- NN-1)

Thus, in the limit N— <, the ensemble average prob-
ability that a site is occupied by a particle which has an

occupied next nearest neighbor is, according to Egs.
11 and 12,

%onzu -6)+6° =67 (13)

where 6=Limy..q/N.
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Schrodinger equation and quantum state codons in discrete
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Quantum states of simple systems are shown to have composite root-pole structure in the complex
transform plane. The Schridinger condition becomes the inverse of a continuity equation expressing
invariance of the W-transform codon under discrete displacement. Four distinct quotient polynomial
solutions model the Legendre, Hermite, Laguerre, and Jacobi polynomial families. Schrédinger
coefficients are identified with pole strengths of quotient polynomials and are geometricaily

interpreted in terms of universal root and pole interactions.

LEGENDRE FAMILY

For the hydrogenic atom the separated Schrodinger
equation defining the spherical harmonic gives rise to
the familiar equation

A =xP” =2(m +1)xP’ +[B=m(m +1)|P=0. (1)

The eigenvalues and eigensolutions of this system can be
determined by application of the finite Mellin transform

p(k)= [° Plx)x™dx, (2)

which yields, after collecting terms,
[k +m) (& +m +1) = B]p(k) = (k +1)(k +2)p(k +2) =2mP(1).
(3)

Clearly, the solution of the komogeneous equation /X«)
must satisfy the functional equation

Ple) {k +1)(k +2) _ (k +1)x+2)
Pk+2) " (k+m)k+m+1) =8 (k=1 +mlx+1+m+1)’

(4)

where the eigenvalue spectrum 8=1I(/ +1) follows from
the superposition requirement of integral roots for the
quadratic denominator polynomial. The transform state-
ment of the Schrodinger equation requires a /-function
structure such that its displacement two units toward
positive « is equivalent to the materialization of a pole
at k=[ —m and root suppression at - (I +m +1), together
with a pole annihilation and root creation at x=-1, -2,

We verify by direct substitution that the functional
equation is satisfied for /=0, 1, 2,..., Iml|<I, by the
associated Legendve transform'

[(1+m)/ 2]

((l-m)/2
P= 1L _

0 (k~1+m +2n).
n=0

(5)

The quotient polynomial character specifies the residues
at the poles I —m —2x as

(K+l+m—2n+1)/

Rimmenn= Lim , (k=1 +m +21) P1(«)

m -2

{Qm)/
=" 2](21-27\-2n+1)/[“-'ﬁ;/2](2n—2)\)
n= n=

()\:-0, 17 e ’[(l ‘m)/z])- (6)
These pole strengths are identified for m > 0 as coeffi-
cients of corresponding associated Legendre

polynomials?

[G-m)/21

e(x)=(1 -x®)"/2Pr(x)=(1 ~x*"/? Ry poa®' ™2,

)

A=0
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We note that in transform space the P/ function
possesses a root-pole structure for m <0 as well as for
positive m. This is not true in Schrodinger space for
which P} has no polynomial representation for negative
m.

Returning to the functional equation, it can be shown
using the asymptotic behavior of the transform that for
negative m the inhomogeneous term vanishes. In these
cases it follows that P*(k) =pT(x). For positive m the
quotient polynomial becomes “improper,” with more
roots than poles. Although this relation no longer holds,
the Schrédinger polynomial coefficients nevertheless
remain identified with the residues R,_,_,, at the poles
of the homogeneous solution PJ*, enabling us to ignore
the inhomogeneous terms in this and subsequent coeffi-
cient specifications.

Figure 1 shows the root-pole patterns of the Asso-
ciated Legendre transform /7 and /. as well as the
manner in which structural displacement arises from the
creation and annihilation of root and pole form factors.

HERMITE FAMILY

For the linear harmonic oscillator the Schrodinger
solution factors into ¢ = H(x) exp(-x2/2), with H the
eigensolution of the Hermite equation

H" =2xH' +(2E/fiw -1)H=0, (8)

By operating on the equation with the finite Mellin
transform we obtain, after collecting terms,

2[k = (E/fw ~5)]hlk) = ( +1)(k +2) h(x +2)

=~(k=1)H(1)-H'(1). 9)
T T T T T T T 1
. [} [ I. O (@] (? 9:(,()
Bel >0< .
e o o o0 0 o ! Plicrar
6
< e e O 0 O
~ N
/T% /?\ \
. L . o O O Pyt +2)
| { 1 { L | | | J
~10 -8 -6 -4 2 0 x 2 4 [3

FIG. 1. Legendre quotient polynomial root-pole pattern.
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o . . . s O o O H, ix)
| ~NAS 4
B pod
b . . s O o O Hixra)
. . . . . (@) (@) (o) H# 1)
N> A
. . . . O O @] ?g(uz)
L 1 | 1 | } I | ]
16 -8 3 -4 2 0 x 2 a 3

FIG. 2. Hermite quotient polynomial root-pole pattern.

The solution of the homogeneous equation A(x) must
satisfy the functional equation

He) (k+10c+2)  (k+1)(x+2)
Hik+2)" 2[k-E/fw-5)] 2k =-n)

where the eigenvalue spectrum, E,=(n +3)/iw, has been
determined as before by the superposition requirement
of integral roots for the denominator. This statement
requires that a displacement two units to the right be
equivalent to the materialization of a pole at k=n to-
gether with a pole suppression and root appearance at
k=-1, =2 (7 odd) or k=-2, -1 (n even), respectively.

(10)

A new feature is the absence of root destruction, im-
plied by the linear rather than quadratic denominator
form which characterizes the Legendre family. The lack
of suppression is seen in the infinite root pattern of the
reciprocal T function entering into the improper quotient
polynomial, the Hermite transform (Fig. 2)

o) = Sl Tl t D/ =La/2), an

which satisfies the functional equation.

By choosing the arbitrary constant C,=2'"/2V7n!,
the residues at the poles n —2a,

R, = k{ir_réx( Kk =n =204 (k)

ﬁn'/l"(n—[n/Z 143 =)

I'I""0 e = A)
N 22y
=Py A= Lo, 2D, (2)

are readily identifiable as the coefficients of the Hermite
polynomials H, (x).?

LAGUERRE FAMILY

The radial equation for the hydrogenic atom in spheri-
cal polar coordinates involves the associated Laguerre
equation

VA 2
pL1/+(2l+2—p)L’+<mE—l—l>L=0. (13)

By operating with the finite Mellin transform, we ob-
tain, after collecting terms,
(k- ze?/m(=2E/ )2 +1 +1]1(k) = (k +1)(k +21 +2) I(x +1)

=—(k+21 +1)L(1) = L"(1). (14)
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The solution of the homogeneous equaﬁon L(rc) must
satisfy the functional equation

L) (g +1)(k +27 +2) ke +1)(k +21 +2)
L(k+1) " k=[zZe*/H(=2E/u)?2-1-1] " «=-(n-1-1)
(15)

where the superposition requirement of integral poles
establishes the principal quantum number » and energy
levels E,= ~ uZ%*/(2n°#%). This equation demands a
configuration such that the creation and suppression of
poles at k=n -1 -1 and -1, together with a root appear-
ance at k=~ (27 +2) be equivalent to a pattern shift one
unit toward higher x. These stipulations are met by the
associated Laguevre transform

2141 n- 2
L2540 =(-) '% (16)

Like the Hermite, this transform structure is asso-
ciated through the reciprocal T function with an infinite
sequence of roots toward negative «x. In contrast, how-
ever, to the Legendre and Hermite families in which
the roots and poles are separately at even or odd in-
tegers, the Laguerre roots and poles are 1ntegral and
singly spaced [see Fig. 3(a)].

By choosing the constant C,;=[(n +1)!]?, the residues

at the poles k=2,
R1=1Kig‘1(x =2} 3B (k)

n+l

[ +)12/T(\ +21 +2)
M5 = m)
A

=(-)" (A=0, 1,..., n=1-=1),

amn

are identified as the coefficients of the associated
21+1

Laguerre polynomials L2}Y(p).*

JACOBI FAMILY

As the final system we consider the Jacobi differential
equation which arises in connection with the symmetri-
cal top®

(x=x3J" +[q = (p +1)x]|J’" +uln +p)J =0, (18)

A transform development analogous to that applied to
the other families yields as the solution to the homo-
geneous transform equation

f T T I | I I |
e e 0 00 0 0 00000 Q:M
:é:(c) ¥ :(5:
. 1 3.
o e 0o e 00 00000 £, a0
o o0 o 00000 L2260
X oK heg
e o 0 0 00000 ' Faz.2.x40)
| 1 1 | 1 1 | S| 1
<10 -8 -6 -4 -2 0or 2 4 6

FIG. 3. Quotient polynomial root-pole patterns. (a) Laguerre
codon; (b) Jacobi codon.
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TABLE 1. Root-pole structure of Schridinger polynomial
families.

Spacing Finite Infinite

no. of roots no. of roots
Double Legendre Hermite
Single Jacobi Laguerre

Mok +p +n—m)

0% _o(k —n +m) (19)

G0, a3K) = Cppq

By appropriate choice of the constant c,,,, the resi-
dues at the poles n -2,

R"_F(_)x<n\ T(g +n) T(p +2n+2) (=0, 1,...,n),

AJT(p+2n) Tlg+n=2)
(20)

identify with the coefficients of the Jacobi polynomials
I P, q5%).°

Like the Legendre, the Jacobi transform has a finite
number of roots [Fig. 3(b)]. On the other hand, the
Jacobi exhibits an infegral, rather than the even—odd
pattern of the Lagendre roots and poles. It would appear
that the Jacobi polynomial completes the quartet of
finite pole structures associated with finite orthogonal
polynomial solutions of the Schrddinger equation, with
all four combinations of finite or infinite root patterns
and odd—even or integral root-pole structure repre-
sented in Table I.

The disposition of quotient polynomial roots and poles
in transform space thus specifies a unique, space-
invariant configuration representing each electron state
in simple quantum systems. These highly ordered
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codons prbvide all the information—in readily retriev-
able geometric form —which is contained within the
physically more opaque Schrodinger y functions. The
eigenvalue spectrum, for example, follows from the
superposition requirement of integrally valued roots and
poles. The eigenfunction coefficients are identified with
pole strengths and are thus easily calculable from the
root-pole patterns. Since the residue of a pole is direct-
1y proportional to the product of the separations of the
pole from the roots and inversely proportional to the
product of the separations from other poles, the
Schrédinger coefficients can be understood in terms of
a universal atf{ractive interaction between root and pole
and a repulsive interaction between two poles.

Finally, we see that the wave equation is the inverse
transform statement in Schrodinger configuration space
of the requirement that the root-pole quantum state con-
figuration be invariant under integral displacement. We
may consequently view the Schrodinger equation then as
following from a conservation law of electron morphology
in a discrete Mellin transform space.

{[n/2] denotes the largest integer less than or equal to n/2.
’E. Jahnke, F. Emde, and F. L3sch, Tables of Higher Func-
tions (McGraw-Hill, New York, 1960), 6th ed., p. 115,
3Handbook of Mathematical Functions, edited by M.
Abramowitz and I, A. Stegun, NBS Applied Mathematics Se-
ries 55 (U.S. Govt. Printing Office, Washington, 1964), par.
22.3.10.

‘L. Pauling and E. B. Wilson, Introduction to Quantum Me-
chanics (McGraw-Hill, New York, 1935), p. 131.

SH. Margenau and G. M. Murphy, Mathematics of Physics and
Chemistry (Van Nostraund, Princeton, N.J., 1956), 2nd ed.,
pp. 36871,

"®Reference 3, par. 22.3.3.



Coherent pulse propagation, a dispersive, irreversible
phenomenon
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The initial value problem for the propagation of a pulse through a resonant two-level optical medium
is solved by the inverse scattering method. In general, an incident pulse decomposes not only into a
special class of pulses to which the medium is transparent but also yields radiation which is
absorbed by the medium. In this respect “this problem” has properties markedly different from other
dispersive and reversible wave phenomena some of which are tractable by the inverse scattering

method. Indeed, it is remarkable that in the present case the method still applies. In particular, we
show that, while there are an infinite number of local conservation laws, the integrated densities, and
in particular the energy, are only conserved for a very special class of initial conditions. The
theoretical results obtained are in close agreement with all the qualitative features observed in the
experiments on coherent pulse propagation. Finally, we also show that causality is preserved. Two

new and novel features are introduced and briefly discussed. First, we show that if the homogeneous
broadening effect is 2 function of position in the medium, the pulses may speed up and slow down
accordingly, without losing their permanent identities. Second, we have found a new kind of solution

mode corresponding to a proper eigenvalue of the scattering problem which is not a bound state.

1. INTRODUCTION

Self-induced transparency (SIT), ' the effect of a
coherent medium response (acting as an attenuator) to
an incident electric field, was first discovered by McCall
and Hahn, 2 More recently, G. Lamb, et al.3® have
been able to obtain a whole class of special solutions by
the inverse scattering method. By assuming both that
the eigenvalues of the appropriate scattering problem
remain invariant and that there is no continuous spec-
trum, permanent localized solutions (analogous to the
solitons of the Korteweg—deVries equation; in the con-
text of the sine-Gordon equation they have been termed
kinks and breathers; colleagues in nonlinear optics refer
to them as 27 and Ox pulses) of the relevant Maxwell—
Bloch equations are obtained, Propagation heights and
speeds are approximated by using the conservation
equations.,

In short, Lamb has treated only the case of an inci-
dent pulse to which the medium is totally transparent
and which undergoes pure lossless propagation. In this
situation, the incident pulse decomposes only into a se-
quence of “solitons” which interact with the medium in
a very special way so that no net energy is exchanged.
In general, however, only a certain portion of the inci-
dent pulse forms these special solitons to which the
medium is transparent. The rest of the energy, which
is mathematically characterized as the continuous spec-
trum of the appropriate eigenvalue problem (to be in-
troduced in succeeding paragraphs), is ‘radiation” and
is eventually transferred irreversibly to the medium
leaving the portion of the medium in which the decom-
position of the incident pulse occurs in a permanently
excited state. (The eventual decay of these excited
atoms through spontaneous emission occurs over a
longer time scale and is not incorporated in this
mathematical model. )

In this paper we present the procedure for solving the
general initial value problem by the inverse scattering
technique. We follow closely the ideas laid out in our
recent articles.”® Significantly, it is found that many
of the aspects of SIT are remarkably different from all
of the nonlinear evolution equations solved previously by
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this method. Most particularly, while there is a se-
quence of local conservation laws,

AT, | of.
+ =
T Ix 0 @

the integrated desities [f,d7, including the positive de-
finite norm corresponding to energy, are not necessari-
ly conserved. This is a consequence of the irreversible
losses to the medium. Indeed, for an arbitrary incident
pulse, the total energy of the electromagnetic field is

a monotonically decreasing function of time, decaying
to a constant that depends on the number and amplitudes
of the permanent localized pulses which emerge from
the decomposition of the incident pulse.

Simply stated, SIT has properties in common with
known dispersive and reversible wave phenomena, and
still others which are essentially irreversible. By irre-
versible we mean that for any particular initial condi-
tion, energy is transferred to the medium. This re-
sults in a population inversion which, due to dephasing
effects, is exponentially decaying in the direction of
propagation. Thus, integration in the reverse direction
would be accompanied by exponential growth. [This is
not to say that a sequential pulse in the same direction
cannot synchronize (rephase) the system and lead to a
coherent photon echo, an effect discussed by Hahn® and
Abella, Kurnit, and Hartman'?]. Only if the continuous
spectrum is absent, is the problem purely dispersive
and reversible. It is indeed remarkable, then, that when
the irreversible effects are included, the inverse scat-
tering method can still be applied.

In Sec. oI, we give the eigenvalue problem, derive the
evolution equations for the scattering data of this eigen-
value problem, explicitly solve them, and also give the
equations necessary for solving the inverse problem. In
Sec. III, we first give a brief review of the typical re-
sults obtained by the inverse scattering method. Then
we compare and contrast the solutions from SIT with
the typical case, and discuss the agreement of these
solutions with what is experimentally known about ultra-
short coherent pulse propagation. Finally, in Sec. IV,
we discuss the unique feature of SIT wherein the “trans-
mission coefficient” is not time invariant, and its im-
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plication for the conservation laws. Also, by using the
evolution equations for the scattering data, a closed
form solution for the “conserved” quantities can be
obtained.

1. EVOLUTION OF THE SCATTERING DATA

We consider the following initial value problem. An
incident electromagnetic wavetrain within the confines
of a spatially modulated envelope impinges on a medium
at x=0. Measuring time 7 in a frame moving with the
phase speed of the incident wave pulse, the SIT equa-
tions (following Ref, 6) are, in nondimensional form,

e, =), 2)
A, +2iar=eN, (3a)
N,=-3{" +ar™). (3b)

Here ¢ is the complex electric field envelope, A is the
out-of-phase and in-phase components of the induced
polarization (also complex), N is the normalized popula-
tion inversion, and (\)=[%, g(a)r(a,x,7)da, where g(a)
characterizes the inhomogeneous broadening of the
medium and is normalized to unit area, The initial con-
ditions are the values of e{(x=0,7) (which is assumed to
decay sufficiently rapidly as 7—-z %), MT~~x)=0,

and N(T— —«)—~ -1, We remark that given e(x=0, 7),
only one set of boundary conditions (T — ~ ) can be
prescribed for the “Bloch equations” (3).

Following Ref. 6, consider the eigenvalue problem

1 ity =zev,, (4a)

(4b)

on the interval — o <7<« (subscripts in 7 and x denote
partial differentiation). Using the ideas in Refs. 7 and 8,
we now show how the x dependencies of v, and v,,

. 1%
Vg — 180, = — 2€ vy,

lezA(c,x, T)v1+B(§,x, T)vzs
v21= C(gy x, T)‘l)l _A(gyx’ T)UZ’

can be used to construct e(x, 7) with the above initial
and boundary conditions.

(52)
(5b)

Equations (4), (5) require the integrability conditions

A, =3eC+3e*B, (6a)
B_+2i{B= 3¢, - A¢, (6b)
C,=24LC = - }e* — Ae*, (6¢c)

which ensure that the eigenvalue ¢ is independent of x.
With ¢ real, it is straightforward to show that the
choices

A(g,x,T)= <g Na>

B(g,x,T)= - _<ﬁ>

f N{a, x,'r)g(a) da, (7a)

f A(a xZT)g(a)da
____; da

‘Pf
“(Tc)

where P [Z, denotes the Cauchy principal value integral,
satisfy (6) because of (2) and (3). [As might be expected,

(To)

C(t,x,7)=- 4—i<€ A a, x, Tie(@)
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the consistent choice of principal value or indenting the
contour under (over) the singularity a= ¢ leads to the
same final results, | The unique features of this prob-
lem are manifested in the mathematical fact that, as
T+, A, B,C need not be equal to their respective
values as 7— — « (unlike all other nonlinear evolution.
equations previously solved by the inverse scattering
method). These results are simply seen by noting that
(3), given € at any x, constitute ordinary linear (in A,N)
differential equations in 7, the solutions of which are
uniquely determined by the conditions N(T—~ ~=)—~ -1
and A(T—~ —»)— 0. Naturally, N and A do not, in gen-
eral, take on these values as 7— + .

Indeed, the quantities N, A, and »*, as shown by
Lamb,® are related to the fundamental solutions of @).
We define

=[] 2]

to be independent solutions of (2), which satisfy the
boundary conditions
— 1
¢ [0] exp(-i&7) (8a)

as 7— — for all x.

¢~ [_01] exp(i£7) (8b)

Then we can identify N and ) with ¢ and ¢ as follows:

=[,(,%,T) 6, (&, %, 1)+ 6,(L,%,7) ¢5(£,%,7)] | ey (92)
A=20,(,%,7)$(L,%,T) | ruq- 9b)
Note that (9) gives N and X in terms of ¢ and ¢ at
£=a. When ¢ is real.

—_ | %
o= [_ ¢T] s (10)

and it is the second independent solution of (4) with the
above boundary condition (8b). In accordance with the
usual scattering procedure!! let, as 7=+,

_la(z,x)exp(-it7)
¢ [b(i,x)exp(igr) ’ (11a)
—_ |b(&,x)exp(-it7)
¢ [—§(£,x)exp(i§T)] (11b)
where for ¢ real, aa +bb=1, a=a*, b=>b*. By using

these results, as 7+, N can be concisely written

as,

N(a,x,T—+ =)~ -1+2bb*(a,x), (12)

and

Ma,x, T+ ») =~ 2ab*(a, x) exp(- 2iaT). (13)

Notice if b=0 (no continuous spectrum), then N(7 — + =)
— -1, and (7~ + ) —0. (12) and (13) indicate that in
general the medium is left in an excited state. The T
dependency of the polarization (\) is a reflection of the
fact that the oscillators return to their natural frequen-
cy; 2a is a measure of the difference between the carri-
er wave frequency of the incident pulse and the natural
frequency corresponding to the difference in energy
levels of the broadened two level medium.

Since it is the quantities ¢ exp(4.x) and ¢ exp(-A_x)
which satisfy (5), then
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e (142)

7= [A;;A- _AB+A_] 3, (14p)
where

AL, x)=lim A(¢, x, 7). (15)

T =co

Then, in the limit of 7—~ +«, by using (7), (11), (12),
(13), (14) and (15), the evolution equations for (¢, x)
and b(¢,x) are

=4_i[< 1+2b*b(a x)> <g a>]

-4—i I lim <exp[2i(§—oz)]‘r W ]b, (16a)
bxz—zi F;i_rgo xpl2i(a - £)r Mﬁ‘lﬂ
i'F -1+2b*b(a, x) -1
_4__< 2 >+<€_a>]b, (16b)

where, for ¢ real,

> f (..,)g(a)

Note that the singular point @ = ¢ is removable and
therefore any choice for ((-*°)/{¢f - a)), applied consis-
tently, yields the same analytic function.

Using well-known results when ¢ is real, we find
ab*exp[2i(¢ - a)1]

lim =ina(t, x)b* (¢, x)g(t), (17a)

T t—-a
lim (“* ”exf’t[ﬁ"fx“ = "T]> = — ina* (£, Db (£, )g(2).
(1)
Thus, (16) reduces to
i *
a,= % a ( zl"ila> —inbb*g)
- 5’ a f ;’b gla) da, (18a)
_ i, ( )
2 ¢~
_ 3 aa*
=50 -La roo 8@ da. (18b)

In (15), [¢(Jc,) refer to the contours along the real
axis indenting under (over) the pole at a =¢.

To complete the solution of (18), we need the x de-
pendency of aa* for real ¢ (bb* =1 —aa*). This follows
directly from (18a). Defining

A= gg*, (19)
then (18a) gives

A=A~ )rg, (20)
or

Ao, x)= o (21)

"40+ (1 -u‘o) exp(_ ﬂgx) ’
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where 4, =¢(a,0), Consequently, the solution of (18)
is

a(t, x)=a(t, 0) exP[" in(g; x)]) (223,)
_ b(£,0) exp(if) exp(~ 7gx) cx [ gda
b(E, %)= Ay + (1 —~g,) exp(- 7gx) exp<z EL, t- a) ’
(22b)
where
QL x)= = _L 1n[,40 +(1 =A,) exp(— mgx)]. (23)

In order to determine €, N, and A for x>0 via the in-
verse scattering method, we do not need the general re-
sult given by (22) and (23), but only the x dependence of
(i) b*/a for real ¢, (ii) the bound state eigenvalues (¢,)
in the upper half ¢-plane [which are found from the
elgenvalue problem (4) and are the zeros of a], and (iii)

. (When b* is analytically extendable into the upper
half g-plane, C, is simply the residue of b*/a at the
eigenvalue {= L’ ) First, the x independence of the
eigenvalues [assumed by Lamb® and required by (6)]
can immediately be seen from (22a) and (23). Since, in
the upper half ¢-plane, © is analytic, the zeros of a do
not move (furthermore, new zeros do not appear), and
the eigenvalues will therefore remain independent of x.
From (22) and (23) [or also from (18)] we have

gla) a] (24)

w €= 0o [- 5 £5

and

&la)
t-a doz] . (25)

To complete the solution, one continues as given in
Ref. 11. First, solve the eigenvalue problem (4) for the
bound state eigenvalues (£,), and C,, and also for b*/a
(¢ =real), all at x=0. Then, using (24) and (25),
construct

= ) 17 b*
F(y)="1§> Ck(x) exp(— 7'tky)+ 5;’[_» ;—({,x)

X exp(-ity) dt. (26)
Solve the inhomogeneous linear integral equation
K(r,6)
=F(1+6) - f f F(6+B) FX(B+¥)K(7,y) dB dy;

@7

C,(x) = C,(0) exp [--z‘x

then € is given by
- 4K(7,73%). (28)

Once K is found, N and A can also be determined. !

elx, )=

In concluding this section, we note an alternative
form for (24) is

-’j—}(s,o)exp[ zg(ﬁ)x“xpf fi_)da]

(29)
which explicitly shows that »*/a decays exponentially
as x— at a rate proportional to the inhomogeneous
broadening.

ba_*'(E,x)z
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11l. GENERAL FEATURES OF THE SOLUTION

Of all the steps required for the application of the
inverse scattering method, the most important and
crucial step is to be able to solve for the time depen-
dence (in this case, the x~-dependence) of the scattering
data for arbitrary initial scattering data. Once this is
done, everything else follows, allowing one to construct
the solution at any later time (in this case, x) from the
initial data and to determine the form and structure of
the general solution, For those familiar with Hamilton—
Jacobi theory, the power of the inverse scattering
method can best be appreciated as follows: The inverse
scattering method is simply a canonical transformation
which yields the Hamilton—Jacobi functional differential
equation completely separable. Naturally once separa-
tion has been achieved, the solution for the resulting
“action-angle” variables is trivial. Although complete
separation is not achieved in the case of SIT, still the
separation is sufficient to allow a solution to be found,
as we have just seen. For the rest of this section, we
want to give a review of the typical forms and features
of solutions obtained via the inverse scattering method,
discuss the analogies and distinct differences of the
solutions for SIT compared to other inverse scattering
solutions, and show the remarkable qualitative agree-
ment between these solutions with what is known experi-
mentally about ultrashort coherent pulse propagation.

Throughout all applications of the inverse scattering
method, 78 11=13 there are two distinct features of the
general solution which have remained invariant. The
first is the concept of the “soliton, 7' which is a stable,
localized, permanent waveform which evolves in time
by a simple translation. The second is the concept of
“radiation” which is not in general localized, does not
have a permanent shape, and in general does decay
algebraically in time. Any general solution of the evolu-
tion equations will always contain a mixture of these two
fundamental solutions, and in general, it is impossible -
to separate (by inspection) a general solution into these
two fundamental modes since the mixing is nonlinear.
However, when a general solution is “mapped” by the
direct scattering problem (which is a nonlinear map-
ping) into the scattering data, these fundamental modes
are then separated. [This is simply a generalization of
the well-known technique for solving linear evolution
equations by Fourier transformations, whereby one
“maps” a function into its Fourier transform, In this
case, the evolution equation for the Fourier transform
is also separable. One should also note that Eq. (26)
is in effect a Fourier transform!] In terms of the scat-
tering data, each “soliton” corresponds to exactly one
bound state of the eigenvalue problem and vise versa,
while the “radiation” corresponds to the continuous spec-
tra of the eigenvalue problem. These modes are easily
seen from the form of F [Eq. (26)]. In (26), each soliton
is specified by giving £, and C,, where §, gives the
velocities of the soliton, while C, essentially specifies
the initial position and phase of the soliton, Consequent-
ly, the number of solitons is exactly equal to the number
of bound states. For the radiation mode, this is rep-
resented in (26) by the integral along the real axis over
the continuous spectrum, and is specified by giving

(b*/a).

J. Math. Phys,, Vol. 15, No. 11, November 1974

Ablowitz, Kaup, and Newell: Self-induced transparency

1865

The simplest solution to find via the inverse scatter-
ing method is the solution for a single soliton with no
radiation present. In this case, when we set b({)=0,
the kernel of (26) becomes completely separable, al-
lowing an explicit solution. Inserting the x-dependence
given by (25), then, from (26), (27), and (28), we find

€(x, 7) =47 exp(- i¢) sechd, (30)
where

Li=g+im, (31a)

C,= - 2in exp(~ 6,) exp(+ig,), (31b)

6= 6, +w,x — 277, (32a)

=y +w,x—2¢T, (32b)

w1+iw2=—%‘/:g§?-_)-_d?a. (33)

To relate these variables to physical quantities, we
first note that x and T are not the usual space—time co-
ordinates. Letting the usual space—time coordinates be
X and T, then when c=1 (c=speed of light)

x=X, (34a)
7=T-X. (34b)

Thus by (30), (32a), and (34) this soliton has a velocity
of

v=(1+w,/2n)", (35)

which is less than unity. Before proceeding further, it
becomes necessary to choose a model for the inhomo-
geneous broadening term in (33). A physical and simple
model is the Lorentzian line shape

g(ct)=l L

S (36)

where 2T is the width at half-height, From (33) and (36)
we have

.1 &

©1= = BTG ITE (37a)
—41__n+l

wp=+3 FTmrTR’ (37)

and consequently, when I «< 7, the velocity is essential-
ly dependent only on the magnitude of ;. On the other
hand, the width of the soliton (in time, 7T') is inversely
proportional to the imaginary part of the eigenvalue 7,
while the amplitude is proportional to 5. This is a well-
known result for nonlinear waveforms, in that the
height, width, and velocity are interrelated.

In addition to single soliton solutions, multiple
soliton solutions can also be explicitly given,'+13 A
special type of a multiple soliton solution occurs when
more than one soliton have the same velocity, and these
have been called “multi-soliton bound states.” These
solutions in general have a very complicated and oscil-
lating waveform. A simple example of a multisoliton
bound state for the SIT equations is the analogy of the
“breather” (called a O7 pulse by Lamb) solution of the
sine-Gordon equation.” In the special case where Re),
N, and g are even in @, ImX is odd in @, and €(0,7) is
real, then one can show that e(x, ) remains real for all
x and the discrete eigenvalues must occur either on the
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imaginary axis £=0, whence we have either a simple
soliton (kink)

e(x, T)=4nseché (38)
or in complex conjugate pairs (¢ and - ¢*) whence we
have a breather
gl Ecoshfsing +nsinhfcos¢d

£ cosh28 + 12/t cos?¢

_4 8, N cos¢
=4 aTtan (g cosh9>’ 39)

elx, )=

with 6 and ¢ as given by (32).

Usually, the computation of solutions when the radia-
tion (the continuous spectrum) is present is very diffi-
cult,!® The exact manner in which this part of the spec-
trum evolves in time depends on the specific problem
being solved, but one can still make some general state-
ments concerning it., This fundamental mode of the solu-
tion is invariably characterized by a series of oscilla-
tions which propagate away from the initial disturbance
(whence the name “radiation”). In all other cases (ex-
cept SIT), these oscillations decay only algebraically in
time, usually approaching some special decaying non-
linear oscillating state. Consequently, all of these sys-
tems evolve toward a general final state consisting of
free solitons, multisoliton bound states, and decaying
radiation, with the soliton states eventually ordering
themselves according to their velocities.

Much more could be said about the inverse scattering
solutions, but it is now perhaps best to refer the reader
to the literature in this area, '~ and instead go on to
discuss some of the specifics of the solutions for SIT.

Many of the features of SIT are very similar to the
general case discussed above in that we have these two
fundamental modes consisting of solitons and radiation.
However, SIT is distinctly different from all other pre-
vious systems solved by the inverse scattering method
in that the x dependence of the continuous spectrum [Eq.
(29)] is not simply oscillatory, but is damped! This has
the physical consequence that the medium will act as a
“filter,” and will only allow the discrete spectrum (the
solitons) to be propagated through. Of course, this is
exactly what is observed experimentally. To see what
has happened to the continuous spectrum, let us con-
sider an arbitrary initial pulse incident on a medium at
x =0, Knowing the shape of the initial pulse, we can
solve the eigenvalue problem (4) for the bound state
parameters (¢,,C,, £#=1,2,...,N), the “transmission
coefficient”, a, and the “reflection coefficient”, b, for
real & Let us now look at N and X in the limit of T— + o,
which corresponds to the respective values after the
initial pulse has passed. Directly from (12), (13), (22),
and (23), we find

2(1 + N,) exp(~ 7gx)

-1+
N, x) ! 1-N,+ (1 4+ N,) exp(—mgx) ’

(40)

2)&(“,0, T) exp(_ ng/z)exP(- ZX) (41)
1-N,+ (@ +N,) exp(-mgx) °

Ao, x, 7)—~

where N, is N at x=0 as 7— +« and y is a real phase
given by
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x = gla)da
x:Q+Q*+-2—P'/:~ _C_—_a—’ (42)
with Q given by (23). Equations (40) and (41) exhibit two
more well-known but related phenomena: the excitation
of the medium and its consequent “ringing” after the
initial pulse has passed.!'? Since (40) shows that, in
general, N+1 is not zero as T— +, a certain fraction
of the atoms remain excited after the initial pulse has
passed. In order to do this, energy must be extracted
from the initial pulse, and it is then shared coherently
between the atoms, causing the ringing as given by (41).
Since the solitons will eventually be propagated through,
they cannot lose energy, so that the energy must come
from the continuous spectrum. Further, the absorption
of the continuous spectrum continues until it becomes
exponentially small as x—«, with both N+1 and A—0
in this limit.

Inspection of (41) reveals a very interesting feature
of the ringing. For certain initial pulse profiles, the
maximum amplitude of the ringing will not occur at
x=0, but can occur well inside the medium, at x=xr(cv),
given by

1 1+ No(a)
ng(a) In (1 —N,(@) ) . (43)

Naturally, to be physical, x, must be greater than zero,
requiring Ny(a)>0, and if N,(a) <0, then the maximum
in the physical region occurs at x=0, Of course, this is
not totally unexpected since as a consequence of (3) and
the boundary conditions, we have

N+ ¥ a=1, (44)

showing that | x| is a maximum when N=0. Thus, if

the initial pulse gives N> 0 for a range of a, due to the
following absorption of the continuous spectrum, N will
monotonically decrease in x, giving the maximum in A
at some x> 0. What is new about (43) is by solving for
the complete x dependence of the scattering data we have
an explicit expression for x,.

x(a):

Of course, the rate at which the continuous spectrum
is absorbed depends only on the inhomogeneous broaden-
ing factor g(a). Since g is normalized to have a unit
area, the effective absorption rate depends mostly on
the width of the level and the width and centering of the
incident pulse. If the central frequency of the incident
pulse is centered on the resonant frequency and if its
width is smaller than the level width, then a maximum
filtering effect is achieved. For the model (36), the
decay length in this case for the continuous spectrum
[see Eq. (29)] is simply 37T'. When the central frequen-
cy of the incident pulse is not centered on the resonant
frequency by a significant amount, then, in terms of
(36), the decay length increases significantly to @?/T",
giving inefficient filtering.

In concluding this section, we want to look at the form
of the solution as x =, and will direct our attention to
the function F in (26). In this limit, the contribution of
the radiation term to F becomes exponentially small
while the soliton contribution becomes exponentially
large, forcing F to approach the form for pure solitons
(i.e., no radiation). If one now neglects the radiation
contribution, a closed form solution for e(x, 7) is possi-
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ble.!! As is well known, as x—, this solution ap-
proaches a linear sum of the simple soliton solutions,
(30), and multisoliton bound states. This illustrates
another well-known property of ultrashort coherent
pulse propagation called “pulse-reshaping” whereby
the incident pulse is “reshaped” into those pulses capa-
ble of undergoing lossless propagation (solitons).

Let us now return and consider the radiation contribu-
tion to F in this limit. If one uses the method of steep-
est descent, one finds that the radiation contribution to
F does vanish exponentially everywhere, except near
the light cone (r=0). Here, when b*/a approaches zero
only algebraically as | | -, the radiation field is
merely a small “blip.” Otherwise, it gives no
contribution,

Now, let the initial conditions be such that e =0 if
7<0. Then since (2) is causal, ¢ must remain zero for
all x when 7<0. The radiation contribution to F guaran-
tees this, because if ¢e=0 when 7<0 at x=0, one can
show that b*/a is analytically extenable into the upper
half ¢-plane and that C_k is then simply the residue of
b*/a at ¢=¢,. Then, by contour integration, one can
show that F, and hence e(x,7), are identically zero for
all x when 7<0. In other words, in this case the radia-
tion field is necessary to ensure that the forward tail of
the leading soliton does not extend beyond the light cone.

Finally, we point out that the pulse heights and shapes
are dependent on the medium parameters, but not on the
inhomogeneous broadening g{a). The pulse speeds do de-
pend on this factor. But, returning to the derivations in
Sec. II, one sees that, without loss of generality, we
could allow g(a) to be also a function of x and still ob-
tain the x dependence of the scattering data. In this
case, the solitons would still retain the same heights
and shape while changing their velocities as they
propagate.

IV. MATHEMATICAL ASPECTS OF SIT

In all other previous examples using the inverse
scattering method to solve nonlinear evolution equations,
the x dependency of the scattering data was always given
by

a,=0, b,=-24,(0)b,

where A,(¢)=A_(¢£)=A,(¢) and was independent of x. The
simplicity of these expressions, and in particular the x
invariance of a (the “transmission coefficient”), was
related to the existence of globally conserved quantities.
(For a further and fuller discussion see Ref. 12.) The
present problem has this property only when the incident
pulse is so special as to decompose into only kinks and
breathers with no “radiation”, i.e., b(¢£)=0. The fact
that the initial value problem is still tractable when Eq.
(16) are fairly complicated leads us to conjecture that
the inverse method may be applicable to a wider class
of problems than heretofore believed.

In general, b(£)+#0, and although one still has local
conservation laws, the global quantities are not con~
served. As examples, the first two local conservation
laws are given by

fi=1%¢*e, (452)
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fr=1(*ef —e¥e,, (45b)

T,=(1+N), (46a)

T, =e*e(N) + 24 {@*) — 2ie*(ar) - 8(a?(N+1)), (46b)
where (45) and (46) satisfy (1). Defining

F = f f,ar, 47)
then from (1) we have

aF, . |*

dx " e (48)

As shown by Schnack and Lamb,!® when € vanishes suffi-
ciently rapid as 7— +=, (48) becomes
dF,

2% —K (are(N+1))

0

, (49)

T=—w

where K, is a set of numerical coefficients. By using
(40), (49) is integrable, and this gives

F0 =50 -2 [ du oo

m
X1n (—1—-_2—N° + 1—-+2—NQ exp(~ ng)) . (50)

We note that, as x—«=, F, becomes independent of the
inhomogeneous broadening factor, a result which is
contrary to that suggested by Ref. 16, Still, one can
use the conservation laws in certain cases to obtain
reasonable values for the eigenvalues, although one can
easily devise many examples where this technique will
fail. For example, let €(7,0) be zero if 7<0 or 7> 71,,
and a constant value of ¢, between these limits. Then,
from (4), it is easy to show that b(a) - 0(1/a) as |a]
—~o, and, by (12), N,— -1+ 0(1/a). Then inspection of
(43) shows that F,(x — +=) is undefined if n> 2. Thus,
in this example, one has only one conservation law
which can be used, and if the initial profile contains
more than one soliton, a unique determination of the
eigenvalues is impossible.

In any case, whenever le¢| —O0 faster than | ]! as
T—1%, one can always determine the eigenvalues by
simply solving the eigenvalue problem, Eq. (4). Even
in the most complicated cases, numerical determination
of the eigenvalues is quite practical with present high
speed computers.

Finally, one interesting feature of the eigenvalue
problem (4) is the possibility of having a=0 (“bound
states”) on the real axis!?! For the KdV equation, '
bound states on the real axis are strictly forbidden,
but are allowed by {4) as can be shown easily by specific
examples. One can now ask whether or not these modes
give anything new for SIT. First, if a=0 on the real
axis, F as given by (26) has a pole in the integral on
the real axis. If one retraces the derivation of (27),
one finds that this integral is to be replaced by the
Cauchy principle value plus (~i)+ Res[(b*/a) exp(~ity)]
at the pole (i.e., when b* is sufficiently analytic to be
extended a certain amount into the upper half ¢-plane,
F is always a contour integral above all zeros of a).
Taking the limit of large x and using the method of
steepest descent, one finds that the contribution to F
from a zero on the real axis vanishes exponentially in
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x like the radiation does. Meanwhile, the T dependence
of F is in between that of a soliton and radiation, since
for small 7 it gives zero and for large 7 it simply os-
cillates like exp(—i£,7), where &, is the zero of a.
(Solitons grow exponentially in 7 while the radiation de-
cays algebraically.) -Due to this x and T dependence, a
zero on the real axis corresponds more to a particular
form of radiation than to a soliton. From (35) and (37)
we see that if we did consider it to be a soliton, it would
have a zero velocity; consequently it will never “detach”
itself from the radiation, in agreement with the x and 7
dependence of F,

Finally, for a zero of a on the real axis, we note the
form of a and b as x— . From (22), in this limit,
lal =1 and |b| —0 exponentially everywhere on the real
axis except at the zero of a. Here, {a] =0 and |b] —1.
Consequently, in this limit a and b do not possess a first
derivative with respect to ¢, which implies the integral
IZ 1€l +171) d7 does not exist as x— ©.2 A zero on the
real axis also has a consequence for the ringing, since
at a=¢,, x, [Eq. (43)] is infinity. However, the width
of this ringing about & = ¢, vanishes exponentially in x,
causing the stored energy to also vanish exponentially.

*Supported in part under NSF Grants Nos. GP-32839X2 and
GP-43653, o
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tNote added in proof: While the term “Self-induced trans-
parency” literally connotes only lossless propagation, we
use the term in the wider context as referring to general
coherent pulse propagation.
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Factorizability of resonance poles in multiparticle

amplitudes
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Using the energy-analytic representation of Green’s functions and relying on certain explicitly stated
properties of the off-shell scattering elements, it is shown that resonance poles in the § matrix
contribute poles to the off-shell scattering amplitude, and the residues there have the same

factorizable form as that associated with bound state particles.

1. INTRODUCTION

It is a well-known deduction from the LSZ formulation
of quantum field theory that bound state particles pro-
duce direct channel poles in the off-shell scattering
amplitude, and these poles have factorizable residues.
This behavior is usually assumed to hold for unstable
particles as well, both in quantum field theory and S-
matrix theory. In the latter case, where particles are
actually identified with their poles, the factorization of
the residues into on-shell vertex functions is a very
strong condition and is taken as an essential axiom of
the theory. For quantum field theory the condition is
even more stringent, since it involves the appearance,
in the off-shell scattering elements, of poles which
depend only on the total energy and have residues which
factorize into “in” and “out” off-shell wavefunctions.

In this paper we shall not be concerned with the diffi-
cult problem of whether quantum fields may be ascribed
to unstable particles: all fields that appear will relate
to stable particles (having spin 0, for simplicity).
Rather, our aim is to demonstrate, within the LSZ
framework, that unstable particles which result from
resonances of stable particles and appear in the S matrix
as second-sheet poles, necessarily contribute poles to
the off-shell scattering elements; these poles depend
only on the total energy and have factorizable residues
in the sense described above.

Except for the case of 2—2 scattering, the analytic
structure of multiparticle S-matrix elements is very
imperfectly understood, and present-day knowledge of
the analytic structure of off-shell amplitudes is even
less complete. Our treatment therefore demands that
certain very plausible assumptions are made concerning
the analyticity of the off-shell amplitudes. Modulo these
assumptions, which have been considered in the litera-
ture in connection with Feynman diagrams,’ the problem
is successfully solved.

In the course of the explanation we define an on-shell
_phase space. This describes asymptotic particle states
of a fixed total 4-momentum, and so allows the analytic
continuation of the total energy to be considered inde-
pendently of the “relative” variables; it is also shown
that “Hermitian symmetry” of the S matrix holds with
this particular definition.

The following notation is used for 4-vectors and the
Lorentz product:

x=(%0,X), XY=xYp—X-Y.

2. KINEMATICS
Consider an n-particle asymptotic channel “c”, either
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of the “in” or “out” type, defined by particles with
masses m,, -+, m,. For simplicity it will be assumed
that these constituent particles are all different. The
purpose of this section is to define a parametrization of
the physical states in “¢” which have the same 4-momen-
tum E =(E,, E).

If Ip,,..., P, is such a state in which the particles

have 4-momenta p;=(p,,P,), where p,=(p} +m?)*/?,
then

Eosz}(p‘]’.+m§)”2, 2.1)
E:ij. (2.2)

The relative 4-momenta p,, ..., p, are defined by p,
=p,~E/n, and we shall denote by P the 3n-vector
Py, ..., D). Equation (2.2) thus restricts P to the
(3n —3)~dimensional subspace

n
L EJZ=Z pj = 0: ‘
while Eq. (2.1) restricts P to the convex hypersurface

I .

Now provided E is physical, i.e., EZ<E%2>(m, +. ..
+m,)?, a half-ray from the origin P =0 intersects K in
just one point, so that the possible on-shell momenta of
fixed total energy can be represented by points of the
unit sphere §°in /, i.e., the 3z vectors R°=(rS,...,x°)
satisfying R°e £, (RO)?=(r{)* +... +(r$)2 =1.

With this representation the physical on-shell momen-
ta are

p;=E/n+p,=E/n +xr¢,

where X satisfies

Eo=7;l w,(;) E;;{[(%)+Ar§]z +m§}1/2.

The transformation from the variables p,, ..., p, to the
variables E;,, E, R° will enable us to talk about states
of fixed 4-momentum, and the Jacobian of the trans-
formation is :

a(pl"",pn)= .
AEy,E,R) — 20, (2 /{[(E/n) +arsF +m2p 72

Identifying Ip,, ..., p,) with 1E,R%, it therefore follows
that the inner products of basis vectors are given by

3n-5
A3

<E1,RflE,R°>=(jﬁ12w,(p,)) oE,R) 8(RS,R°) 6%E - E,),

= a(pb CRR) pn)
where 5(R{, R°) is the 6 function on §°,
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FIG. 1. Analytic structure of the function A(E).

It will be sufficient (and more convenient) to use a
center of mass frame where, with a slightly ambiguous
notation we write E=(E,0). Apart from a trivial rota-
tion in 3-space, we then have a Loventz-invariant
description of the states of fixed energy. Omitting the
momentum-preserving 6 function,

(BB, R =( i 2la(esy +mi )

n re 2 ~ .
24 w(rygz AT R R,
=J5(R°) 6(R{,R°), (2.3)
where p, =ar$ and
E= ,El [N3(xS)? +m2 /2, (2.4)

Now all states in “c” with 4-momentum E=(E,0) can
be represented as a superposition of the base states
|E,R). If f is a complex-valued function on §¢, the
state

X(f)= [¢odR° F(RY)|E,RY)

is in channel “c”, and all such states may be expressed
in this form. Further,

x| X (M= [, e dR® JE(R) g*(R) f(R?),

50 that under the identification f—X°(f), the states of
channel “¢” may be identified with L% §°,J5), the space
of square-integrable functions on §°¢ with a weighting
function J£. Under this identification, the asymptotic
state space is therefore

B L*S°, I5),
where the prime denotes that summation is only to be
taken over channels that are open at the energy E. (The

states which are realized physically have a nonzero
component in just one channel.)

For fixed R and E satisfying E >m, +... +m, there
is, as we said, precisely one positive solution of equa-
tion (2.4). A(E) can clearly be analytically continued
away from this region, and it is not difficult to show
that there are branch points of the square-root type at
E=tmytmyt... xm,, where +(m, +... +m,) are the
principal thresholds of the channel and the other 2"
points are pseudo-thresholds. We define the principal
branch of A to be the function with the following cuts:

~0 A< ={(my +eee+m,), my+eret+m, <\ <o,

My =My ~... =M, <A<-=-my+m,+... +m,,
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where m, is the smallest mass (see Fig. 1).

When E describes the path labeled I in Fig. 2, the
path of A is as shown. Thus for continuation round the
threshold cut A changes sign or, more generally, A
satisfies the equation A(E*) = - )(E). It can be seen that
the points ém,/|x;| are not circled in the A plane, and
hence [A*(r5)* +m3]'/? are single-valued functions of E.
Thus the Jacobian function JS(R) appearing in Eq. (2.3)
is multiplied by (~1)*° when A is continued round the
threshold cut.

Thus far we have been considering asymptotic states,
either of the “in” or “out” type, with a fixed 4-momen-
tum E=(E,0)., The scattering operator-S; links the “in”
and “out” states, and under the identification described
above provides a unitary map of @, L% ¢, JS) into itself
(the prime again denotes open channels). S¥ is the re-
striction of S; to channels “¢” and “d”, and maps the
“in” space L3(§¢,Jg) into the “out” space L3*(§%,J2);

a priori, it is only defined if “c” and “d” are open at the
energy E. The matrix elements of § are thus
SE(R?|RY) =, (E,R!|E,R),,.

out

The on-shell transition matrix T is given in operator
form by

Sp=I+iTy
and in matrix form by
T 2(R?|R°)
sélc(Rlec) —
6(Rd, Rc) + iTEﬂc(Rd I Rc) if “g» =“e”.

if ((dn # “Cu’

imE

imA

img /T3]

FIG. 2. The image MT) in the A plane of a curve T which
passes round the threshold cut in the E plane.
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It is now possible to speak (where appropriate) of the
analytic continuation of the transition matrix elements
when E varies and the “relative” variables R°,R? are
fixed; that such continuations do in fact exist is the
basis of dispersion relations in S-matrix theory.

3. DYNAMICS

The off-shell Green’s function for a scattering pro-
cess involving N neutral particles with fields ¢,,..., ¢y
and masses my, ... my is defined as G(p,,...,py),
where

G(psy .y by) 0¥ Py +eo - +by)
= (=) f(ﬁ d4xj> exp(=i 20, %,X0| T[94(x) -+ - () 1[0)

and 7T is the time-ordering operator. The off-shell
transition function is

T(pls' LK) pN)z -iG(pys-. -, pN)JI:{l(p? -m?)

and by the LSZ reduction formulas the physical transi-
tion matrix for the process in which the first » particles
leave with on-shell 4-momenta —p,,..., ~p, and the
last N -# particles enter with on-shell 4-momenta
Dratyssey Dy is equal to T(py, ..., py).

Now

G(Pry.eey Py) 04Dy +++ - +Dy)

== f(jrifl m,) exp(- T, %,) (3.1)
X 0] ety (Hraay) + ++ Deay(Fee) [0 6(xes00 = e err0)
where
6(1) :{(1) : ; :8}
and 7 denotes a permutation of (1, 2, ..., N), Thus

G(Pyyeeey by) 8Py +o o +py)
. [N
= (_ Z)N; f(j[;[lld4(xt(j) - x”].d)))
N-1
X exXp <—ijz=l(x1(j) —x,(’.d))(p'm +eee +p|r(j)))

Xd‘lxv(N)eXP[—ixnw)(Pum te P ))]

x(0 ' FrarHry) * Doy K ary) I 0>9(xvr(j)0 - 1r(j+1)0)

and hence, writing ¥ ;= x,(;, ~ X7(;.1,,» We have

Clpsy o rby) =@ON='T f(”n 2*9,605,0)
N-1
Xexp (_l; ¥; P;) wu(yu ey yN-l)!
where Pl=p,, +** +by;, and w, is defined by

AN P T £ <Ol ¢’r(1)(xnu)) o Gran(Fean) l 0).

Now using the fact that products become convolution
products under Fourier transformation and

f_: dx, exp(—1ix,p,) 68(x,) = ~i/(py — i€),

we have
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G(pl’ e ’pN)

. . Oy, Ply oo oy bno1y PRoy)
[ 2."4 AJ‘dt"'dt . wﬂ(l: 12 ’le N-1
i(2m) ; 1 N-1 HN-I(P;O—tj-’rze) ’

(3.2)

=l

where

Orlqyy e o ey Gy =

1 N-1 .
(2.”.)N-1 I(jl;ll d4y]> eXp(— 4 ;:y, qj)w,(yu . ’yN-l)'

In Eq. (3.2) the integration is taken over ¢;> [(P})?
+M;J'/2, where M] is the least mass occurring in the
mass spectrum of the j -particle states

Greny(Xey) e e ¢1r(j)(xv(j)) ’0>-

Equation (3.2) exposes the analyticity of G in its
energy variables p,,,..., Py DY exXpressing G as a sum
of N! multiple Cauchy integrals in the “nested” sequence
of energy variables Pi,,..., Py, and the result is due
to Taylor (Ref. 2). G thus has cut surfaces which are
functions of the energy sums Pj,. For the scattering
channel in which particles 1, 2, ..., # leave and parti-
cles n+1,..., N enter, the cut surfaces which are
functions of the direct channel energy only, i.e., Pj,
=%(pyo +++* +pa), Occur in the parts of G which result
from integration over the following domains in
Eq. (3.1):

(i) the direct channel region (DCR)

X103« o ’an >x(n+1)0’ seey xNo’

(ii) the antidirect channel region (anti-DCR)

X103 0+« 3 Xn0 <X(ne1)0s + = 3 Xnoe

To fix ideas we now consider a scattering process in
which m neutral scalar particles with fields ¢,,..., ¢,
enter with 4-momenta p,,...,p, and z» neutral scalar
particles with fields #,,...,%, leave with 4-momenta
d1s---,4q, I the total 4-momentum is E=(E,, E) the
relative 4-momenta are defined as [7]. =p,; -E/m, g,
=g, —E/n, and although they are not independent since
2bp;=0=37,, it will pay to preserve the symmetrical
description and retain all of the relative momentum
variables. The Green’s function

G(=q1s.uey=qpy D1y, Will be denoted by
G(‘h; seeyfy 'Pu e ,Pm)-

The energy-analytic representation (EAR) in Eq.
(3.2) gives the analytic structure of G in the variables
E, DPjo» ro, and provided the functions &, are boundary
values of analytic functions, the relative energy vari-
ables may be kept constant and G considered as an ana-
lytic function of E in a cut plane. The cuts which do not
depend on p;, g, (and are therefore “fixed”) are the
kinematic cuts, and as stated above they arise from
contributions from the DCR and anti-DCR.

Now

Glgsy -+ -1 lbrs e -, 0) O*(E - F)
=(=2)"" f(l;[ d* y::) exp(z';.qk (0] T[I;I d)k(yk)gkl)j(xj)]l 0

xexp(- in,.xj)(Ide" xj>,
J
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where E=3p,, F=%gq,, and j and & range from 1 to »
and from 1 to n, respectively. For the incoming parti-
cles the centroid is defined by X=(x, +-+- +x,)/m and
the relative coordinates by %;=x; —X. Thus Jp;x;
=EX+7p,x;. ¥ and ¥, are similarly defined for the
outgoing particles and satisfy }q,v,=FY +34,5,. If

m:}x(?cjo) =u
and
min(3,0) =7,
the DCR is defined by &Y, ~X, +v ~u}=1,

where

: 1 i <0
6(t) 1:t>0}.

Thus, if | Pa) is a complete set of states of 4-momen-
tum P and quantum numbers | o),

GDCR(qn o3y {Pn ces ,Pm) SME-F)
==z [ (1;! a* y,,) expli(FY + 27,510 T(‘}tbk(yk)) | Pa)
x(Pa| T(rjlqu(xj)) |0) exp[~ i(EX +2,3 ?; E,)}(rjxd“ x,).
Using the translation operators,
(Pa) T(l;[ ¢,.(x,.)) |0y = (Pa| T(rj[ rp,.»(;—c,))l 0) exp(iPX),
and replacing the measure [I J.d‘ixj by d*Xdx, where
=07, 0, ++ o+ +1,),
7
we can now write
G™™gyy v s @ulb1y v D) AXE = F)

= (-z)’""’PZa [dyaty
xexplil(F - @)Y +2.7,7,IK0| T([0,(5.)]| Pe
*(Pa | T[119,(%;)1]0)

xexp{=il(E = P)X + 75, %, (Y, = X, +v ~u) dxdX.

Now inserting

_ 1 7 explizt)
9(’)‘21riL z—ie &

and performing the X and ¥ integrals, we obtain

G Mgy, ... I}"u sl )=

(2m)®
T

(=)™ 7, [ayexpli 2, 5 O TG, | Pa)

x{Pa| T (%,)| 0)

asE =y g expli(Ey = P)(w - u))
x exp( zzj_,ﬁjx,-)dx B, =P, +ic

5%E - P).
(3.3)

The bound-state poles appear in expression (3. 3), and
if 1 Pw) is a bound state |b) of mass m,, its contribution
is obtained when J, , , is replaced by [d*P8"(p* —m}),
to give
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(2:: (=iy™ fayexp(i £7,5,)<0] (1,51 |5)

x(o|T{1g,(%)]|0)

. —(p2 231/2 -
R B

The pole is thus generated on the upper sheet of the
mass hyperboloid E®=m? and its residue is

~[4ni(E +mD) /2] GG, . . . ,,|0) GB |y . . . , B,
where
G(@ry- ey |0)=
@m)* (=) [dyexp(i 7,59 0| TI0(5,) | 5)
and
G |Piyeensb)=
@m* (=" (0| T[T (%)} 0) exp(~ 1225, %)) d¥.

A similar pole is generated on the lower sheet of the
hyperboloid when | b) makes its contribution to the anti-
DCR and the pole structure of G near E*=m? is given
by the sum of these:

v )omsl GG, TalD)CBIDL, .y Pm)
v T E®—m?

Glgy, .-

The pole thus has the characteristic form for a stable
particle in the direct channel, i.e., it is a function of

E and its residue factorizes into two wavefunctions
which are functions of the in- and out-relative momenta,
respectively.

It will now be assumed that there are no bound states
in the theory, so that the Hilbert space is spanned by
the many particle states of the elementary particles,
both in the in- and out-asymptotic representations; as
shown by Zimmerman® this does not involve a loss of
generality. We take a center of mass frame where the
total 4~-momentum is E =(E,0), and use the following
notation for the on- and off-shell transition functions
for scattering between channels “¢” and “d”:

1) T%(,,. ..

Buyee)=Tlas, - [pry0 ),

() T¥@, - - . [R)=T(q1, ... [p(E,R),...),

where p {E,R°) are the on-shell 4-momenta for channel
“¢”, associated with R°<c §° and E above the physical
threshold of “c”, as described in Sec. 2.

(iii) The on-shell transition matrix T¥(R?|R°) is simi-
larly defined for channels “¢” and “d”,

These definitions will enable us to vary the total ener-
gy E while the remaining variables are kept fixed,

In order to obtain analagous results to the above in
the case of unstable particles (rather than bound states),
it will be necessary to make the following assumptions
about the analytic structure of the transition functions.

Assumption 1: T¥(gy, ... p1,...) is the boundary val~
ue of an analytic function of E, given by the prescription
€— +0 in the EAR, Eq. (3.2). The spectral functions
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w, are analytic, so that continuation through the cuts is
possible.

The threshold cuts depending on E only and starting
at the fixed branch points E=1+3 m,, where m,, m,,...
are the masses of the particles making up a certain
channel, together constitute the kinematic cuts, and the
continuation of 7% around the kinematic cuts (avoiding
the moving singularities) is defined as the physical
sheet,

Assumplion 2: Similar remarks may be made about
T%(F,, . . . IR°) and T¥(R?|R°), in which R’ and R° rep-
resent the relative momenta of the on-shell particles
as in Sec. 2.

This assumption is rather different from Assumption
1, because when some of the particles are on-shell their
relative 4-momenta are p, =p (E,R°), etc., and when
R¢ is kept fixed they are functions of E and vary as E
is continued around the cut. Hence the path of continua-
tion must also avoid the movable real singularities in
A(E), the function defined in Sec. 2.

Now in the EAR it was shown that the cuts in G which
are functions of E alone arise from the DCR and the
anti~-DCR. Expression (3.3) can be decomposed into the
sum of

B (i g, [d5empi ST, 5)0|T TG, | Pa)

5%(P)

x(Pa| T[r} 4’;(9—6,-)]1 0) exp(~ i;ﬁj x)dEx - —P, +ie

and a term that is nonsingular on the kinematic cut. AG,
the discontinuity in G across the kinematic cut, is ob-
tained from this expression by inserting a complete set
of “in” states. Since the states belong to continuums for
each asymptotic channel, 3 , , is replacad by [d*P} .,
where },; denotes a sum of integrals [ cadR’ over chan-
nels “g” which are open at the energy %, to give

AGE(G,, ... |Py, .. )
=22 Gy ay, ... |R®) JAR®)
X SEXR?|RY) JEHR)GCER|p,, .. .),

where
G%(G.,...|RY)

=@ (- [ aemti 2,50 0] 1[G | B, R,
and
GE(R®|py,...)

=@’ (=" [ (E,R°| T[gl ¢>,-(f,-)]l 0)exp(-i2.p; %) dx.
For the T matrix we can thus write
Prre e )=TEGry e oo |Prs.ns)

—iZ T TG, RO TR

T5(@, - - . (3.4)
X SP*(R®|R%) JXR) TE(R®|By,...).

T¥, represents the value of T¥ at a point on the lower
lip of the kinematic cut opposite the energy E on the
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upper lip, and is the continuation of 7% along a path
which avoids the moving singularities.

Consider the case where p; are the on-shell relative
momenta of an m-particle state of total energy E de-
scribed by R° € §°, with 5,=p (E,R°). Then, as proved
in Sec. 2, p,(E*,R°) =15 ,(E,R°), where I, is the space~
inverting operator. Hence, for l-wave angular momen-
tum states in the direct channel,

TETrs - -« [BRE, EY). ) =(=) (@, . - -

Thus

(")’ Tdsc*(qu CER] Rc)-_- TdEc(qn LR ]Rc)

-2 22 TP, . . . |RY) JYRY) SP*(R?|R®) JHR) TE(R®|R°).
b a

R°).

Remembering that the on-shell T and S matrices
satisfy Sp=1+iTg, and using the unitarity of Sz, Sg*S,
=1, this gives

T%(,,... |R9)
:(_)'?Tg‘(al, ... |R®)JLRYSZ(R?|R). (3.5)
Substituting this expression for T in (3. 4),
TdEc*(‘71» e 51, .. ') = T%C(Eu S Iﬁu one )
= (=) iZ TRy, . .. |R) LR TR By, ..).  (3.6)

Putting 7,, . .. 7, on-shell in (3.4), we obtain a similar
equation to (3.5)

(=) TE®R*|B,, .- .)=Zb:-’8g"(R"IR”) JLR) TER?| 5y, .. .).
Thus, substituting this expression for T in (3. 6),
TEGuye e |Pryees) =TEdTry oo |Brye-)
=i2' T T8, ... |R%) J2(R?)
xS2(R°|R?) JL(R)TE, (R*[B,,...).
This formula will be the basis of our discussion of off-

shell second-sheet structure.

The connection between the off-sheel unitarity rela-
tion (3. 6) and Hermitian analyticity is seen by putting
all of the particles on-shell:

T%(R!|R°) - T¥(R*|R°) =

- i 2 TE(RY | R J (R TH(R | R).
Unitarity gives
T(R®|R)* - T¥(R?|R°) =

~i T THR|R)* TARITH (R | R°).

Thus T%(R? R°)= T<HR°|R%)*, which is the formula for
Hermitian analyticity.

4. SECOND-SHEET STRUCTURE AND
RESONANCES

In the previous section a basic minimal analyticity
was assumed which is sufficient to define the continua-
tion of the transition matrix elements around the kine -
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matic cut in the physical sheet. We shall now discuss
the continuation of the scattering elements downwards
through the kinematic cut into the second Riemann
sheet, which is the unphysical sheet.

A priori the scattering operator S¥ is defined on the
space @’L"’(S‘,J‘E). For this to remain a Hilbert space
when E is complex we extend the definition of the inner
product, and for ¢°,°c L*§°,J5), where E is complex,
put

(@°]9%) = [dR|TE| p°(RE)*po(Re).

Let us now suppose that ¢¢ is a vector in L*(§°,Jg) for
different values of E. Technically, the vector ¢% be-
longs to a different Hilbert space for each value of E.
However, in practice this presents no problem, since
for two complex energies E and E’, L% ¢, Jg) and
L*(§°,J%) are isomorphic under the map ¢°— [J5/
JEI'2 ¢¢, Using this identification we may therefore
define continuity, analyticity, etc. of ¢% with respect
to E.

At a real physical energy E the S-matrix operator
satisfies S} S;=1. Assuming that S; possesses an ana-
lytic continuation into imE >0 and remains a bounded
and invertible operator, (Si«)™ is defined and analytic
in a region of imE <0 which is the mirror image of the
physical-sheet domain. This operator agrees with Sp
for real values of E, and is therefore a downward con-
tinuation of Sz, called the second or unphysical sheet of
Sy and denoted SY.

If the continuation is carried out from E° <E <E?
where E® and E? are consecutive threshold energies for
channels a and b, the second-sheet scattering operator
is defined on the space 'L, J£) and has components
(S%) where ¢ and d range over channels which are
open when E® <E <EP’. By choosing different consecutive
thresholds E° and E® we can therefore define (S¥)™ in
several ways. Unlike the first-sheet structure these
definitions do not all agree, because every threshold
energy is a branch-point and comparison can only be
made between different values of (S¥)!! by circling one
or more of these branch points. To prevent such ambi-
guities, (S¥)™ will denote the continuation of S¥ from
the interval (E®, E®), where E® and E® are consecutive
thresholds and E® <reE <E®, This is clearly the most
direct path of continuation, and physically the most
significant. The unphysical sheet so defined has its
threshold cuts pointing vertically downwards.

The reason why the second-sheet structure of Sg is
important is, of course, because for small values of €,
energies E —ie on the second sheet are topologically
near to the real scattering region, just as energies
E +i€ on the first sheet are also near. Suppose that S5
has a pole A/(E —E,), where the residue A is an
operator, and imE, <0. If A is the null space of A and
R is its range, then the restriction A : A/*—~ & is one to
one and onto. Now G, the product of the rotation and
internal symmetry groups of the theory, has in the
Hilbert space a representation U that commutes with A
and thus leaves A/ and //* invariant. Assuming that the
pole is not accidentally degenerate, the representation
induced by U in /* is irreducible and therefore finite-
dimensional (since G is compact). Thus A can be written
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;‘ "Ilr><¢r l s

where {®,} is an orthonormal basis for N, ¥, =A&, and
n is the degeneracy. When these conditions are satisfied
the pole is called a resonance of complex mass E,.

Since ®, can be obtained from the orbit (under U) of a
single vector &, and ¥, can similarly be obtained from
V¥ =A®, the pole will be denoted by |¥)X®|/(E -E,). (If
the channels are assumed to have fixed quantum num-
bers, this representation is literally correct because
the degeneracy is ‘factored away’.) Putting & =3, ¢°,
¥ =39 we have (S¥)! ~[pD(¢°| /(E - E,) near the pole,
and when ¢° is nonzero the resonance is then coupled to
channel “c”. The S matrix elements satisfy SE(R?|R°)!!
~PURI)* ¢°(R°)/(E - E,) and have factorizable residues
characteristic of a resonance. (The factorizability is
verifiable for a resonance provided it is possible to
determine the second-sheet residues for the different
processes in which the resonance appears. )

Let us now consider the presence of resonances in
off-shell amplitudes. The equation

TE@ry oo |Prye e )=TETs o By - )
HTL TR - [ R IR

X S®(R?|R?) J2(R?) T%%(R?|py, .. .) 4.1)

can be written, when E is continued downwards into the
second sheet,

T80 [Pryo . Y =TE@, .o [Bry )
HIT T TEG, . |RY IR SPRY R

X TR TE®R|By, ... ),
where the superscript I emphasizes first- (physical-)
sheet values. The highly interesting thing about this
equation is that at a resonance pole in SY, where

SE(R?! RMT ~p(RY* p°(R°)/(E - E,)

the off-shell unphysical-sheet amplitude
T%@yy...1P1,...) " has a pole with a factorizable
residue:

TG0y e Py s T ~Xouel@is - -V XanlPry + - )/E =E,),
where

Xoutl@is o+ ) =2 TE @, . . [R)TIE (RY) 7R,

and

XealBrs - ) =T $URY I3 (RO TE (R[5, ... ).

b

This demonstrates that the second-sheet structure of
the off-shell 7 matrix is such that at a resonance ener-
gy the components of T have poles in E with residues
which factorize into wavefunctions of the incoming and
outgoing relative momenta. This is completely analo-
gous to the first-sheet behavior of the T matrix in the
neighborhood of a bound state energy and in agreement
with the alternative description of resonances as un-
stable particles. Although it would be convenient to
identify & or ¥ as the sfafe of the resonance, it must be
remembered that at real physical values of E the
Hilbert space is not @’ L% §¢,Jg), but an isomorphic
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copy of this. The isomorphism depends on the total
energy E and & and ¥ belong to the space when FE as-
sumes an unphysical complex value: Thus no direct
physical meaning can be attached to these vectors.

5. CONCLUSION

The extension to the case of charged particles is
trivial, nor do we expect the occurrence of spin in the
scattered particles to present any difficulty.

It is interesting to compare these results with pre-
vious work on the scalar Bethe—Salpeter equation with
an exchange potential. * On performing the Wick rota-
tion® by which the relative energy variables are con-
tinued to the imaginary axis, a scattering equation may
be obtained that is analytic in a subset of the total ener-
gy plane, and this subset includes the real elastic
scattering region. ® The effect of the Wick rotation is
thus to remove altogether the moving singularities. The
double-sheet structure of the off-shell amplitude, with
imaginary relative energies, may then be exhibited for
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the continuation of the total energy through the elastic
cut, although the situation when higher energies, and
therefore inelastic thresholds, are admitted, is not so
clear.
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The renormalization group and the large » limit
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The basic concepts and formulation of the renormalization group are explained beginning at an
elementary level. Discussion is in the framework of classical statistical mechanics with emphasis on
applications to the theory of critical phenomena. The details are worked out in the large » limit for
2 < d < 4, where n is the number of components of the fluctuating field of interest and & is the
dimension of the thermodynamical system. In the large » limit, the infinite sum of “tree graphs”
offers an exact and analytically tractable description of the renormalization group. It illustrates many
concepts including the fixed point, the critical surface in the space of coupling parameters, and
critical exponents. Most important, it illustrates the origin and the limitation of the scaling
hypothesis. The critical behavior of various correlation functions and the free energy is examined.
Attention is paid to terms often ignored in qualitative scaling arguments. We have attempted to
make this paper self-contained and of pedagogical value to a wide audience.

1. INTRODUCTION

The notion of a renormalization group appeared de-
cades ago in relativistic field theories.! It appeared in
the study of the relationship between the momentum cut-
off and coupling constants. Over the past several years,
Wilson has made important advances in bringing the
ideas of renormalization group into concrete and useful
concepts and has successfully applied them to different
areas of physics.! So far the most successful applica-
tion has been to the theory of critical phenomena.? On
the other hand, existing knowledge in critical phenomena
has been very helpful in understanding the renormaliza-
tion group idea as well. In this paper, we shall explain
the idea of renormalization group beginning at an ele-
mentary level. Our discussion will be within the frame-
work of statistical mechanics of an n-component classi-
cal field in a d-dimensional space. If =3, d=3, this
classical field would describe the fluctuation of magnet-
ization in a ferromagnetic material, for example. We
expect also that the amplitude of “He atoms, which be-
comes large near the A point of liquid Herr, can be
adequately described by a classical field with n=2,
d=3.

Although the basic principles are established and
numerical investigations have begun, the complexities
of the renormalization group machinery makes idealized
model calculations highly desirable for illustrating the
general features. The first simple analytical illustra-
tion of the renormalization group was found by Wilson
and Fisher, ® who demonstrated that for small e=4 —d,
the mathematical complication disappeared. Once the
structure of the renormalization group was understood
for small ¢, perturbation theory calculations of critical
exponents as expansions in powers of € followed.*
Simplicity was expected also in the limit of large n. The
limit of large n first appeared in the “spherical model.’”®
More recently, much work has been done in computing
critical exponents as power series in 1/z and in studying
field theory models with large n.¢~® The renormalization
group in the large n limit, which is fundamental to the
understanding of the results pertaining to large n, was
expected to be tractable analytically, but so far no
comprehensive and reasonably complete information has
been available in the literature. This paper is to present
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this information. We illustrate the full details of the
renormalization group in the large n limit. This illu-
stration is more complicated than the small € limit, but
it demonstrates many important features which are dif-
ficult to visualize in the small € limit.

It is hoped that this paper will serve pedagogical
purposes. We shall include discussions at a very ele-
mentary level so that this paper is self-contained as
well for those readers who are not familiar with the the-
ory of critical phenomena or some jargons of field
theory. These elementary discussions have been in-
cluded in a recent review article.®

An introduction to the use of graph representation is
included. Graphs will be used for studying the large n
limit. However, we want to emphasize that the renor-
malization group idea is valuable partly because if is
free from any perturbation theory, i.e., it is a non-
perturbative concept. The graph representation, which
is a perturbation expansion, is nof essential to the study
of renormalization group. It is nevertheless useful as a
tool of simple calculation, and make some ideas easier
to visualize. In analyzing the large » limits, we shall
sum over an infinite set of graphs and our results
demonstrate well nonperturbative features of the re-
normalization group. The analysis can be done without
introducing graphs at all.®

Before giving the outline of this paper, it should be
helpful to review a few basic ideas in the theory of criti-
cal phenomena.!® Let us imagine a sample of isotropic
ferromagnetic material. If the temperature T is below
its critical temperature T, there is a spontaneous
magnetization. Right above T, there is not. There are
large fluctuations in magnetization for T near 7,. As
the temperature T approaches T, the magnetic suscepti-
bility and some other measurable quantities diverge.
For example, the susceptibility diverges like (T - Tc)'7,
for T> T, where v, one of the critical exponents, is
observed to be near 1.3 for many materials exhibiting
a critical point. The theory of critical phenomena has
the task of explaining these divergences.

These divergences are believed to be consequences of
the large fluctuations of magnetization. Also the ob-
served universal (i.e., independent of materials)
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character of these divergences suggests that only the
large scale behavior, not the detail microscopic inter-
actions, is relevant in a correct explanation.

A useful concept is the correlation length £, which
may be thought of as measuring the average distance
over which the fluctuations of magnetization are corre-
lated. The scaling hypothesis says that £ should be the
longest and the only relevant length in explaining criti-
cal phenomena. It says also that &, diverging like
IT-T,", v>0, counts for the dominating temperature
dependence near T of all quantities. In other words, -
physical quantities depend on T -~ T, only through their
dependence on £. For example, it leads to the following
very important consequence. I we.increase the unit of
length by a factor s, then in the new unit, the system
appears shrunk by a factor s. The correlation length
now becomes £/s under this scale change. Since the
correlation length is proportional to |7—~T 1", a de-
crease in correlation length corresponds to an increase
in |T-T_|. Therefore, near T, the temperature de-
pendence of a physical quantity can be deduced from the
way it behaves under a change of scale. The simplest
example of applying this idea is the following. The free
energy per unit volume F(£) becomes s?F(£) when the
volume of the system is shrunk; d is the dimension.
Therefore F(£/s)=siF(£). Since s is arbitrary, we set
s =&. We then get

F()=s"F(¢/s)=§F(1) « |T-T,|", (1.1)

since §o [T~ T,I™. Later we shall examine the validity
of such arguments. Another important consequence is
that in the limit 7=7T,, & becomes infinite and there is
no longer any length parameter. Thus the system would
look the same if a change in length scale is made. There
are many important consequences of the scaling hy~
pothesis and also ambiguities. It is clear that this
hypothesis is very powerful but its origin is not clear.
A more fundamental understanding is needed. Many
authors have made advances in these directions. Our
understanding becomes more concrete and precise after
Wilson’s renormalization group formulation was
developed.

The first half of this paper is devoted to discussions
of basic ideas and to set up the machinery which is to
carry out these ideas. It is emphasized that the basic
idea is very simple even though the machinery required
is rather complicated. It is hoped that these discussions
will give a clear idea on what is precisely defined and
what is unproved plausible hypotheses.

The second half of this paper is more technical. It
illustrates how the renormalization group machinery
works in the limiting case of large »n. In this case,
exact analytic expressions can be worked out by sum-
ming a special, infinite set of graphs, the so-called
“tree graphs,” which turn out to dominate in the large
n limit,
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We now give a brief sketch of what is done here using
the tree graph summation. This is not a summary but
will give the reader some idea of the content of the
latter half of this paper. -

In the large » limit, possible probability distributions
for the classical field (order parameter fluctuation)
¢,(x), i=1,...,n, take the form P«<exp(- /) with

H = [ dxl(Vo) + Ule(x))],

where

(1.2)

(VoY=222(V0,0, ¢*=32¢}

and ¢ ,(x) contains Fourier components of wave vectors
up to a cutoff A. U(4?) is any function of ¢2 which ap-
proaches infinite as ¢* —«, A renormalization-group
transformation R,, 1 <s <=, takes a probability dis-
tribution P to another P’, and is expressed as a trans-
formation in the space of U’s:

R :U-~U". (1.3)
At the same time, ¢(x) is replaced by s™/2*'/2¢4(x/s)
(n=0 in the large » limit) so that the average of any
function of ¢ over P is the same as the transformed
function of ¢ taken over P’. In other words, R, behaves
like a scale transformation for the probability distribu-
tion. The work done in the second half of this paper in-
cludes (a) the determination of the fixed point U* (satis-
fying R, : U* — U*, a plot of which is given in Fig. 1. (b)
A subspace of the space of U’s is called the critical sur-
face defined by properly fixing one parameter in U, A
system at its critical temperature is represented by a
point on this critical surface. We work out the details of
R,:U—~U' for any U on or close to the critical surface
(it does not matter whether it is above or below). The
transformation of ¢? is also discussed as an illustration
of how products of ¢ transform under R,. Critical be-
havior of various correlation functions are then deter-
mined by the transformations at large s. The fact that
results are independent of the details of U is an illustra-
tion of universality. Note that (1.2) is not the most gen-
eral form of //. However, it is sufficiently general for
the discussion within the framework of free graph
summation.

The tree graphs summed here correspond to those of
the ‘self -consistent Hartree approximation in many-
body theory. As will be seen, the tree graphs for the
renormalization group in the large-n limit displays a
very rich and appealing structure in addition to being
exact in this limit. This is in contrast to the Hartree
approximation in other applications,

The outline of the paper is the following:

Sec. II: Basic concepts are explained in detail. The
meaning of coupling parameters with respect to a cut-
off A is clarified. The renormalization group is defined



1868 Shang-keng Ma: The renormalization group

as transformations in a “parameter space.” Each point
in the parameter space represents a possible probabil~
ity distribution describing the statistical mechanical
system. Formalism is set up. The notion of the fixed
point is introduced.

Sec. III': Critical behaviors are related to the charac-
teristics of the renormalization group acting close to a
subspace called the “critical surface.” Critical expo-
nents related to the correlation function and susceptibil -
ity are introduced. The discussion is qualitative,

Sec. IV: Graphs are introduced and the graph repre-
sentation of the renormalization group is explained.

Sec. V: Tree graphs are introduced. They are shown
to dominate in the large-» limit. The fixed point is gen-~
erated from a simple interaction. General features of
the fixed point are illustrated.

Sec. VI: The details of the renormalization group
transformation in general in the large-» limit are
worked out. The critical surface, critical exponents,
approach to the fixed point, and other concepts and as-
sertions discussed in Sec. III are demonstrated ex-
plicitly. All results are exact in the large » limit. Cor-
rections will be of O(1/n).

Sec. VII: The effect of a uniform external field and
general features below T, are discussed. Characteris-
tics of longitudinal and transverse susceptibilities are
examined in detail in the large » limit. The exponents
6 and B are discussed.

Sec. VII: This section is devoted to a careful study of
the free energy under the transformations of the renor-
malization group. Weakness of the usual scaling argu-
ment given by (1.1) is illustrated.

Sec. IX: A detailed study of the simplest composite
variable ¢2 is carried out. The transformation of ¢2
under the renormalization group is described and the
critical behavior of related correlation functions is
examined. The concept of dimensions of variables is
discussed.

Sec. X: Basis for perturbation theory calculation of
critical exponents is discussed.

Sec. XI: Concluding remarks are made.

Much of Secs. II—IV is devoted to explaining the basic
definitions. Those readers who are already familiar
with the basies may read through Sec. II quickly to get
an idea of the notation and then proceed to Sec. V. The
range of material covered in this paper is very small.
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The emphasis is on the details of the renormalization
group, not on reviewing its accomplishments.

Table I lists frequently occurring symbols and their
defining equations.

Il. RENORMALIZATION GROUP DEFINED

A renormalization group can be defined for any large
system such as a thermodynamical system or a quantum
field. We shall define a renormalization group for a
model thermodynamical system analyzed in the frame-
work of classical statistical mechanics. But before we
proceed with our definitions, we would like to remind
the reader of some truly trivial facts concerning prob-
ability distributions.

A. Digression on trivial observations

Let P(y,,¥,,%,) be the probability distribution function
for the random variables —©<y,,y,, 9, <%, To cal-
culate the average value of any function f(y,, ¥,, y,) of
these random variables, for example, f=y,y,, we
simply do the integral

Frp={3p= f_:dy1dyzdy3y1yzp(yp Y2s ¥a)- (2.1)

We notice that for those f which do not depend on y,, we

$7N

FIG. 1. The fixed point in the large » limit depicted as the
function U*(¢?) for d=2.2, 3, and 3.8. See (5.45)=(5,54). The
unit N, is given by (5. 15) and depends on d.
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TABLE I. Symbols and where they are defined.
== —

A (8.4),(8.5) H (2.12) 1 (7.32)
4, 9.0 H' (2.18) R, 2.17)
o (2.18), (2.27) J (7.33) RE (3.2)
e, e; above (3,3) Ry {5.11) s (2.18)
7 (2,26} L above (2, 6} z {4.11)
I3 (3,17 A (2.11) Yo (4. 20)
F(1) 8.1 . A (5. 38) Y (3.4
F (8.2) [ (2.13) t=t(A} (6,15
F below (8.2),(8.4 g’ (2,17 #=#(N (5.38)
3 (5.23) p* (2,25 f 5.9
%, 08 (4.12) m (5.4) A (3.4, (6.18)
$ilx) (2,19 u(T)  Sec. I 2 7 (5.42)
b (2.6) & (3.1 * (5.41)
¢* (5.6} N {5.10) Uy 2.12)
(#?" {9.5),(9.8) Ny Ny (5.30)—(5.32) %, (4. 20)
(Vp)? (5.46) N, (5.15) U (4.23)
G (2.8),(2.20},(2.29) N’ (5.13) N} {7.286)
G, 4.2 NX  (5.38),6.12) U {6.3), (6,16}
6f  4.22) N, (5.17) 74 6.17)
G G, (7.19),(7.20) v (3.8) U* (5.48)
H 7.0 P (2.12) Y ¥y (3.3
BA) 2,11 P (2.18) z (6.19)

o e e

can obtain an equivalent distribution function P'{y,, v,)
by integrating out the variable y, from P(y,,y,,v,), i.e.,

P'(y,, yz)Ej:: dysP(¥1, V25 ¥s)- (2.2)

Therefore, let us remember

Facet 1: P', obtained from P by integrating out certain
random variables, is equivalent to P provided we are
not interested in these integrated variables. Next, we
observe that if we obtain a new probability distribution
P'(y,, 34, ¥5) from P(y,, 9., ¥,) by changing the name of
random variables, we won’t get anything new. For
example,

Pr{y5, ¥4 ¥6) = Py, 94 V) 2.3)

i.e., just replacing 1,2,3 in P(y,, v, v,) by 2,4,6. The
only thing we must watch out for is that when we cal-
culate averages, we must change labels accordingly.
For example,

(3’2>P=f Ay, 39,893 P31, 92, ¥5)9>

= [ 49:49,89:P' (32, 90, Yo
=(Ypprs (2.9)
i.e., we must calculate the average of y, over P’ if we

want to get the average of y, over P. This sounds too
trivial, but must be remembered:

Fact 2: P’, obtained from P by relabeling the random
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variables, is equivalent to P provided that when average
values are computed we relabel the random variables of
interest accordingly. Finally, if & is a positive constant
and

P9y, 95, 95)=@*Play,, ay,, ay,) 2.4
then P’ clearly says nothing new. Any average calculat-
ed over P’ is easily related to that over P. For
example,

<y1>;:=a<}’1r>p"<}’?>p:a2<y§>ph (2~5)

Therefore, let us remember

Fact 3: P, obtained from P by changing random
variables by a constant factor, is equivalent to P pro-
vided we multiply the random variables of interest by
the same factor when average values are computed.

We list the above three trivial observations so that it
will be easier for the reader to understand the more
complicated, but basically the same procedures later.
A transformation in the renormalization group essen-
tially transforms a given probability distribution to an
equivalent one in the above mentioned three steps: in-
tegration, relabeling, and multiplying random variables
by a constant.

B. Model and notation

Imag'ine a d-dimensional crystal lattice of volume L4,
where L is measured in units of lattice spacing. At each
lattice site x, there is an n~component vector “spin”
?(x)=(¢,(x), #,(x). .. d,(x)). Let ¢, denote Fourier com-~
ponents of ¢(x):

$,(0)=L/°2 ¢, exp(ik- %), (2.6)
where the sum over wavevectors k is taken over the L?
discrete points in the first Brillouin zone. The density
of points, L#%2m)"¢, is very large since L is a very
large number. Each ¢,, is regarded as a random
variable. There are nL? of them. The probability dis-
tribution for these random variables is given by

Py ero €XP(=Hy, 0o/ T), 2.7
where T is the temperature and H,, . is the Hamilton-
ian which is assumed to be a given function of all the
random variables., We assume that H, is invariant

micro
under rotations in the z-dimensional spin vector space.

The correlation function G{k) is defined as

G(MS,,= [ dix(® (x) (0)) exp(~ ik - x)
:<'¢ik|2>6ij’ (2-8)

where the average (- --) is taken over P, . given by
(2.7). If a term
~ [ d*xp,(0H (2.9)

is added to the Hamiltonian, i.e., when a “magnetic
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field” is turned on in the 1 direction, we can define the
susceptibility as

8(,)/2H. (2.10)

It is very easy to show that the susceptibility per unit
volume is just G(0), Other quantities of interest will be
defined later.

Since the probability distribution is assumed to be in-
variant under rotations in spin space, we expect G(k) to
be independent of ¢ if there is no external field. How-
ever, a rotationally invariant probability distribution
can still produce average values which are not rotation-
ally invariant. This happens below 7, where one of the
components, say ¢,, has nonzero average even when
H=0. In our discussions, we shall always assume that
H =0 unless otherwise specified.

C. The idea of an effective Hamiltonian

What we are interested in is the behavior of long-
wavelength fluctuations, i.e., that of ¢, with small k.
The Hamiltonian is usually given by nearest-neighbor
interactions. Since we expect that the characteristics of
long wavelength fluctuations are independent of the
microscopic details, we should be able to obtain an ef-
fective Hamiltonian with these irrelevant details re-
moved. In other words, this effective Hamiltonian
should not involve any ¢, with large k., Of course, the
effective Hamiltonian must lead to the same results as
the original Hamiltonian would when averages involving
¢,’s with small & are calculated. How do we find this
effective Hamiltonian? It is very easy in principle. Re-
member the trivial Fact 1 mentioned at the beginning of
this section: We may simply integrate out the irrelevant
random variables. Thus, P,,..., as givenby (2.7), is

miecer
equivalent to, apart from a normalization constant,

: o J %, exp(-H,, ., /T)=expl~H(A)/T], (2.11)

where the multiple integral is taken over all ¢,,’s with
all i{=1,...,nand all klarger than A. The cutoff A is
taken to be much less than the inverse lattice spacing
but still much larger than the small range of 2 which

is of interest ultimately. H(A) defined by (2. 11) is the
desired effective Hamiltonian. Note that we set A this
way to leave ¢,’s in the intermediate k range unintegrat-
ed. This is because, besides the random variables in
the small k range themselves, those in the intermediate
k range also play an important part in determining the
small %k behavior. The effective Hamiltonian H(A) tells
us about the interactions down to a minimum distance
A™, The finer details beyond this distance are averaged
out. The multiple integrals in (2. 11) will not be easy to
carry out explicitly. However, we expect that H(A) in
general will look very different. For example, if the
microscopic Hamiltonian has only quadratic and quartic
terms in ¢, the multiple integral of (2. 11) will generate
all powers of ¢ for H(A). This will become more evident
later. The important point to remember is that the cut-
off A is an inseparable part of the definition of a Hamil-
tonian. The fluctuations over a distance less than A
does play a role in determining the structure of H(A).
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The ultimate task is to derive singular behavior of
physical quantities such as the correlation function near
the critical point from a generally nonsingular Hamil-
tonian. Constructing H(A) does not seem to help in this
task. No singularity is expected in H(A) since we only
smeared out fluctuation over very short distances, If
we are now to study critical behaviors starting from
H(A), then the task would appear to be much worse than
before because H(A) would look far more complicated
than the microscopic Hamiltonian. However, we will be
able to see the major characteristics of the critical be-
havior, which are independent of the details of H(A), by
examining how H(A) would behave under the renormali-
zation group, which is a set of transformations and will
be defined shortly.

D. The parameter space

We shall now be more general and consider a large
class of probability distributions for ¢,,. We now forget
about our spin model introduced above and regard b,.’s
just as a set of random variables. But we still want the
label & to range over discrete points in a sphere of
radius A in & space. The density of points is L4(27)4,
Of course, 1<i<n, as before.

Any probability distribution for these random varia-
bles can be specified by a set of parameters. Let us
imagine that each set of parameters is a point in a
parameler space, so that any probability distribution
P is represented by a point p in this space. To make
our discussion more concrete, let us illustrate how
such a parameter space can be constructed. Write

Poexp(-#),

M= i L-(m g >
m=1 k.

D irgPigrye - Piy 2y Yom
T O A 2m*2m

(2.12)

where k,,=—(k, +k,+-+-+k,,,) and u,, is a function
of &, k,...k;, . We now define our parameter space as
the space of all possible u,

+ const,

2 E(um UggUgy *°* )- (2. 13)

We shall refer to the «,,’s as “coupling parameters. ”
This space is of course enormous. The region of in-
terest in this space will be very limited. Symmetry and
other restrictions will be required for u,,, for example.
The additive constant in # is not included as a param-
eter. Odd powers of ¢, are not included but they will be
needed when discussing external field. Anyway, further
restrictions and adjustments can always be made when
necessary. We shall stick to (2. 12) for our general
discussion.

We do want to emphasize that A, the cutoff in 2 space,
is, unless otherwise specified, always fixed for all
probability distributions. The coupling parameters are
meaningless without fixing A. Another important point
is that L, which tells us how many random variables
there are, is not included as a parameter. This is be-
cause we are interested in the limit of infinite L. Aver~
ages of interest are always L-independent in this limit.
In fact we shall write p=pu’ as long as u,,=uj  for all
m even if L#L’.
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A slightly more appealing way of writing (2.12) is by
introducing ¢(x):

$(x)=L7/2 21 b, explik- x); (2.14)

then we have

H=2 :,.a?-ez,, [ dtx,...d%,,0, ()0, (%.). .. &y, (¥2n)
XUy (%) = Xy X = Koy + + + Kooy = Xom)s (2.15)

where v,, are related to u,, via
2m-1 .
Upm= [ ,I=Il (A%, exp(=ik,* )0 (I1) Vou + + Vopr)-

(2.186)

We shall assume that v, represents short range inter-
actions (i.e., v,, — 0 if one or more of the y’s becomes
large) so that u,, can be expanded in powers of k.

Finally, to those readers who are too used to statis-
tical mechanical terminology, we want to emphasize
that //, defined by (2.12), is not to be thought of as
“energy divided by temperature.” It is just the logarithm
of the probability distribution. As far as our parameter
space is concerned, the concepts of energy and tem-
perature are irrelevant. They enter only in (2.11) as
inputs in determining a particular probability distribu-
tion corresponding to a particular point in the param-
eter space.

E. Renormalization group

Consider the following transformation which takes a
probability distribution P to another probability distri-
bution P, We want to represent this transformation as

“’,=R3’J’ (2. 17)

which transforms the point u to p’ in the parameter
space. Of course, yu and p’ represent P and P’, respec-
tively. This transformation R_ is defined implicitly by

P’ocexp(—ﬁ')=[ 1 qu)ik'exP(_H)]

i A/s<A Oy A gp”

(2.18)

Equation (2. 12) defines p, and p’ is to be extracted
from /'’ by writing /' in the form of (2. 12) and identify-
ing the coefficients of products of random variables.
Three steps are involved in (2. 18). First, we integrate
out those ¢, with &’ between A/s and A. Second, we
relabel the random variables by enlarging the wavevec-
tors by a factor s. Third, we multiply all random varia-
bles by a constant factor a . The three trivial facts list-
ed at the begimning of this section imply that P’ is
equivalent to P as far as random variables ¢, with

k< A/s are concerned and provided that proper relabel -
ing and multiplying by o are done when averages are
computed. For example,

(bl Dp=0X]00! D5 (2.19)
If we define G(k, u)={l¢ 1%, (2.19) says
G(k, u)=0a2G(sk, R 11). (2.20)

Note that the number of random variables in P’ is | »
smaller by a factor s°¢ than that in P owing to the mul-
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tiple integral in (2. 18). The change of scale k— sk
makes the density of points in k space smaller by the
same factor. These simply mean that the volume of the
system described by P’ is L'?=s"L%, i.e., shrunk by a
factor s¢, To identify ' from /' given by (2.18), we
must write /4’ in the form of (2.12) with L’ replacing
L; and the density of points in k space is now L’4(2m)™,
As was mentioned earlier, L’ or L plays no role in cal-
culating quantities of interest and is not included as a
parameter. The set of R,, 1 <5<, will be called the
“renormalization group.” We did not define the inverse
of R,; so it is not quite a group.

So far nothing has been said about the a_ in (2. 18).
The only role of @ is in the last substitution in (2.18).
If we have two successive transformations R and R,
then it is clear from (2. 18) that they have the same ef-
fect as a single transformation R_,. except that the sub-
stitution is ¢, - a a ¢, not ¢, —~a_.b .. Thus, in
order to observe

RR =R, .p (2.21)
for any p, we must demand
a0 =a_.. (2.22)

We shall so restrict our choice of & . Equation (2.22) is
a severe restriction. It requires that

a =s?, (2.23)
where y is a constant. If we regard the substitution
¢, —~s%,, (2.24)

in (2.18) as a scale change, then y can be interpreted
as the dimension of ¢, in units of length. The dimension
of ¢, can be defined by the microscopic Hamiltonian.
However the dimension so defined is not useful. Instead,
we shall determine y with respect to a fixed point.

A fixed point p* in the parameter space is that
satisfying

R p*=p*, (2.25)

It will play a major role in later discussions. Equation
(2. 25) may be viewed as an equation to be solved for p*.
It is not expected to have a solution unless the y in a
=s? is properly chosen. This seems reasonable if we
consider the case s —~, We expect that all factors of s
(and hence y) must delicately balance to achieve (2.25).
In some sense (2.25) is an “eigenvalue equation” for the
eigenvalue y and eigenvector p*. Of course, (2.25) is
not a linear equation. We have no theorem so far to

tell us whether (2.25) has a discrete, or continuous set
of solutions, or even any solution at all. For the mo-
ment, we simply assume that there is at least one solu-
tion. We shall concentrate on a particular one with a
definite y. We define the quantity 7 for this y:

y=1-0/2, (2.26)
then
a, =s""/2, (2.27)

We shall identify 77 as a critical exponent later. Equa-
tion (2. 20) now takes the form

Gk, p) = s*"G(sk, R 1. (2.28)
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This formula will be used very often later.

More general correlation functions can be defined.
For example, let

Giliz...im(kz’ Fe oo By 1)
= [ do%,d%,. .. A%, exp(— ik, x, — -+ =ik, * X,)
x(0;,(0)¢; (x1)...¢; (x,))p
— 7. d/2)m-
=LA b, (2.29)

where b, =~k, ~ k; —+ -+ =k, and none of the subsums
of the B’s is zero. It is easy to generalize (2.28) to

Giyurit (Fan Ry 1)
=s(m/2)(d+2-n)-dci1.

CBindes

; (sky...sk_, R )

ceim

(2.30)

provided that &, &,, ..., &, <A/s.

F. R;as a refined scale transformation

The transformation R, is basically a scale transfor-
mation. It tells how coupling parameters change when
the system is shrunk by a factor s. However, the multi-
ple integral and the determination of & _by a fixed point
equation make R_ very different from a naive change of
scale. The multiple integral in (2. 18) is necessary to
keep the cutoff A fixed under R, i.e., it changes A to
A/s and then lets the scale change bring A/s back to A.
This is an extremely important point. The coupling
parameters are defined with respect to a definite A. To
compare two sets of coupling parameters, we must
make sure that they are defined with respect to the same
cutoff, Therefore, to define a sensible scale transfor-
mation, it is necessary to keep A fixed. The multiple
integral is an unambiguous way. Thus, R can be viewed
as a refined scale transformation keeping the cutoif
fixed.

As was mentioned below (2. 24)', the quantity y can be
interpreted as the dimension of ¢, in units of length.

In (2.26) we have chosen y=1—37 to be an interaction-
dependent quantity based on the fixed point equation
(2.25). Thus, the concept of dimension of a random
variable under our refined scale transformation be-
comes an interaction dependent concept. We shall re-
turn to this point later.

G. Smoothed cutoff

The multiple integral in (2. 18) implies a sharp cutoff
in % space. That is to say for k immediately below
AJs, & , 15 not integrated but it would be integrated if %
is immediately above A/s. This sharp cutoff leads one
to expect oscillating tails in the new coupling param-
eters of /' in the coordinate representation. This is
analogous to the Friedel oscillation, which comes from
the sharp Fermi surface, in the theory of Fermi gases.
However unlike the Friedel oscillation, the oscillating
tails here are of a purely mathematical origin and will
lead to no physical consequence. It simply introduced
complications in intermediate steps of calculation. It is
desirable to remove the sharp cutoff by making the
transition from “integrated” to “unintegrated” smooth.
This can be done (see Ref. 1, Sec. XI) but is too com-
plicated to be worth the effort here. In the graph rep-
resentation to be introduced later, this can be done
easily. What we want to point out here is that the fixed
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point p* will depend on how the cutoff is effected. This
will become clearer in later discussions.

H. An important remark

Note that in the definition of R, no reference is made
to the average values that a probability distribution
generates. In particular, whether (¢,(x)) vanishes or
not is irrelevant in (2. 18), The definition of R, is
separated from the concepts of averages, above or be-
low critical point, etc. So far the concept of tempera-
ture simply has not entered. R, simply takes one point
in the parameter space to another.

I. Recursion formula and wavepacket variables

As will be evident later that the transformation of
interest is R, with large s. The usefulness of the re-
normalization group is not affected if we restrict s to

s=2!', 1=0,1,2,3,... (2.31)
so that R_ is just applying R, [ times:
R ,=(R,)". (2.32)

One then works out R,u for a general u. The result is
the recursion formula of Wilson.? The renormalization
group is then obtained by repeated applications of the
recursion formula.

Note that regarding R_ as R, repeated / times is not
just a change of terminology. It exhibits the two dis-
tinctive features of R of large s, i.e., first the trans-
formation R, and second, the repetitions. It is the large
number of repetitions that will be directly related to the
singularities in critical behavior. R, is a completely
nonsingular object. It is the “generator” of the renor-
malization group.

Separating the task of obtaining R, and that of repeat-
ing R, also allows some flexibility in computing and
making approximations. For example, Wilson’s ap-
proximate recursion formula for R, was obtained by
using “wavepacket variables” as integration variables in
the multiple integral of (2. 18). We shall briefly sketch
the basic idea, which can be generalized for other ap-
plications. The reader should consult Ref. 2 for details.

The random variable ¢, denotes the fluctuating am-
plitude of a plane wave configuration exp(ik- x), which
is spread over the whole volume, We expect // to be
simpler when it is written in terms of more “localized”
fluctuations because the interactions are assumed to be
short-ranged. Thus, it should be useful to introduce the
new variables (wavepacket variables)

Blx)=L"12 3, ¢, explik-x,),

(2.33)
1/2A<kR<A

where the points x,, form a lattice. The spacing between
lattice points is such that the total number of variables
®(x,) is the same as the number of ¢,’s with % in the
shell $A < < A. The new variable ¢(x,) represents the
fluctuating amplitude of the wavepacket configuration

L? 2, explik-(x-x,)]
1 /2A<R<A

(2.34)

centered around x,,. This is the “most localized” con-



1873 Shang-keng Ma: The renormalization group

figuration one can construct by superimposing plane
waves of wave vectors in the shell A<k<A. By
smoothing the wavepacket and using ¢(x,) as integration
variables in (2. 18), Wilson worked out an approximate
formula for R,u, which is suitable for numerical work
and also as a basis for further approximations.

In the following sections, we shall always use R, with
arbitrary s and will make no use of the wavepacket
variables. The above brief discussion is to point out
some important features of the renormalization group
which are more explicit in the recursion formula ap-
proach. For numerical investigation, the recursion
formula approach is a powerful tool.

I1l. RENORMALIZATION GROUP NEAR THE FIXED
POINT AND CRITICAL EXPONENTS

We shall now study R, operating near a fixed point p*
defined by R, u*=p* [see (2.25)]. The characteristics
of critical phenomena will be related to those of R,
operating near u*,

So far our definition of R, has been purely formal
since we have not indicated how the multiple integral in
(2. 18) can be carried out, nor have we found a way to
solve (2, 25) for u* and 7. Explicit illustrations will be
given after we discuss the graphic representation of the
renormalization group. In this section, our discussion
will still be purely formal, and far from being rigorous.
The validity of many assumptions and conclusions will
not be evident till later sections.

A. The linearized equation

I p is near pu*, we write formally

(3.1)

where &y is small in some sense. The equation pu’' =R
can be written as

6’ =RIop

W= p*+5u,

(3.2)

since R p*=p*, ' =p*+5u’. RE becomes a linear
operator when O((61)?) terms are dropped in calculating
5u’ from (3.2). In principle, at least, we can construct
a matrix to represent R in (3.2); and we can determine
the eigenvalues and eigenvectors of this matrix. Suppose
that the eigenvalues are found to be X j(s) and corre-
sponding eigenvectors to be ¢, j=1,2,3,...,~. We
label the eigenvalues in the order A, =2, =2;--., Note
that since R,R .¢,=R_ e, we have

A s f(s") =2 (ss),

S (s)=sY, (3.3)

where y; are constants and y, >y,> y,- -+ since s> 1.
We write 60 as a linear combination of the eigenvectors
e

i

6u=]Etjej; (3.4)
then from (3. 2)
6[.1.':; t;s%e,. (3.5)

Apparently, we have made no progress since we do not
know y; or e j» But simplicity appears if it turns out that
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only y,>0, all other y’s are negative. In this case

bu’ =RIdp =t,sMe, + O(s?2) (3.86)

if s is so large that the first term dominates but ¢, is
still small enough so that the linear approximation for
R, is valid. I ¢, =0 to start with, then RI6y -0 as s
increases, i.e., u will be “pushed” toward the fixed
point by R,. Wilson calls #, a “relevant” variable and
other ¢’s “irrelevant. 2

We can imagine that the eigenvectors ¢, span the
linear vector space which is the neighborhood of u*.
The subspace defined by £, =0 will be called the “critical
surface.” Points on the critical surface will be pushed
to the fixed point by R,, and points not on the critical
surface will be pushed toward e, but away from the fixed
point as (3.6) indicates. (See Fig. 2.)

The linear approximation for R, is expected to
break down when i, u’ are not very close to pu*. But we
expect the general picture of a critical surface and the
approach to the e, axis of R u for large s to remain
valid.

B. Critical exponents and the correlation length

So far no physical concept has appeared in our dis-
cussion of the renormalization group. R, simply trans-
forms one probability distribution to another in a pecu-
liar way. Now we shall examine the effect of R, on the
probability distribution (2. 12), which describes fluctua-
tions in a physical system at a definite temperature.
This particular probability distribution is represented
by a certain point ¢(7) in the parameter space. This
point corresponds to a set of coupling parameters which
depend on the temperature T. They must be smooth
functions of T. Because we have integrated out ¢, with
k> A in the microscopic Hamiltonian [see (2. 12)],

H(A) would depend on T also. It is important to note
that the integrations are over ¢, with large %’ and we
would not expect any singular temperature dependence
of H(A) due to such integrals. If we vary T continuously,
we would trace out a trajectory in the parameter space.
This trajectory should be very smooth, and hits the
critical surface at a specijal temperature 7', as shown

in Fig. 2. At a temperature T which is very close to

T, and assuming u(T) is close to p*, the distance from
u(T) to the critical surface, which is ¢, is then propor-
tional to T = T_.'* Let us assume that u(7) is close to
b* write p(7T)=p*+6u(T). Then (3.6) reads

RESW(T)=A(T - T )s* /e, + O(s*?) (3.7)

€

FIG. 2. Qualitative picture of a critical surface and a fixed
point p* in the parameter space. The arrows point in direc-
tions of motion of R u as s increases. The trajectory on the
left is u(7) for a continuous range of T, and u(T,) is the inter-
section of the trajectory and the critical surface.
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where we have defined v by
(3.8)

and A is a constant. Applying (3.7) to (2.28), we obtain,
for large s,

Gk, W(T)) = s2[G(sk, w* +A(T = T,)s v, + O(s))].
(3.9)

Consider first the case T=T_. Since s is arbitrary, we
choose s to be proportional to 1/k, say s=A/2k. We
then get from (3. 9)

Gk, 1(T ) = > (A /2)2"[G(A /2, w¥) + O((A/28)*)].
(3.10)

1/V=y1’

In the limit of small %, this means
G(k, u(T)) < k>,

which is the equation defining the critical exponent 7.
Thus, the critical exponent 7 is related to the fixed
point equation (2.23). The power law (3.11) for G(%) at
T, is seen as a consequence of the fact that Rsu(Tc) ap-
proaches u* for large s. How small must k be in order
that (3. 11) is a good approximation? Equation (3. 10)
says that (22/A)¥2 must be small, much smaller than
1/2. say, i.e.,

2k /A << 2t/ ¥z,

(3.11)

(3.12)

Equation (3. 12) is an estimate of the size of the critical
region in k space, namely the region in which (3. 11)
holds. This size therefore strongly depends on y,. Re-
call that sz is the second largest eigenvalue of R_ in
the linear approximation, and y, is assumed to be
negative.

Now we consider the case T'-T_ >0, k=0. We choose
s=1#". Here we write #, for A(T - T,). Equation (3.9)
gives

GO, w(T)=1*"[G(0, u* +e,) +O(12)].
In the limit of small 4, i.e., small T -T_, we have

G0, W(T)) =<(T =T, (3.14)

7:]}(2—7]). (3.15)

(3.13)

Equation (3. 14) is the definition of the critical exponent
¥. Equation (3. 15) is a-“scaling law” relating the expo-
nents ¥, 71, and v. Equation (3. 14) holds when #*%2 is
much smaller than order unity, say 3, as (3.13) in-
dicates, This means

£, << 2132, (3. 16)

Similar to (3.12), (3.16) estimates the size of critical
region in T — T,. Equations (3.12) and (3. 16) are over-
simplified to exhibit the role of y,. Many other param-
eters will in general enter in determining the size of
the critical region. In other words, instead of 2!/%, we
should have a complicated model dependent constant
raised to the power 1/y,. The relevant question to
answer for determining the size of the critical region is
how large s must be so that R u(T) is well approximated
by u* +14s'/7e,. Intuitively, we expect that the farther
away u(T) is from p*, the larger an s is required, and
hence the smaller the critical region becomes. This
expectation is misleading sometimes, however. We
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shall have an opportunity to examine this point more
explicitly later.

We now define the quantity £ as
E=]t | (3.17)

which we shall call “correlation length.” Then (3.7)
reads .

RE6p=(s/E)} e, + O(s). (3.18)

The effect of R, is thus to decrease the correlation
length by a factor s. If we ignore the O(s¥) term, we
would then arrive at the scaling hypothesis discussed in
the Introduction. Thus the scaling hypothesis is valid if
R, in its linear approximation near p*, is dominated
by one eigenvalue for large s.

What about the case T - T_<0? In this case, #, <0,
we can simply set s=(-¢)" and replace (3. 13) by

G(0, 1(T) = (- 1,)"[G(0, p* —e,) + O((- ,)**2)). (3.19)

This is a correct statement but it turns out, for this
case, to contain no information because G(0, )= for
t, <0 as we shall discuss in Sec. VII. For other cases
(see Sec. VIHI on the free energy, for example), this
kind of result may be useful.

The assumption that ¢ must be near p* can in fact
be relaxed. The critical surface can be taken as a
curved surface extending away from p*. Any u on this
surface has the property that

lim R p = p*,

g=®

(3. 20)

For s large enough, R u will get into the neighborhood
of u*, and the linear approximation will then apply. It
is clear that if u is not close to p* but is very close to
the critical surface, then there is some range of s for
which Ry is not far away from u*. There is no need

to find all the eigenvalues and eigenvalues of RL, All we
need to know is 1/v and y,, which should be regarded as
specifying the leading s dependence of R u for large s.

~ Therefore, the qualitative conclusion obtained in this
section should hold for u(T) close to the critical sur-
face, i.e., for T — T very small, but not necessarily
close to the fixed point.

What we have described in this section is clearly a
plausible conjecture not supported by any proof. In fact
it is just one possible outcome. It is the simplest set of
predictions that we expect from a renormalization group
analysis. Many other possibilities exist. It may turn
out that, besides fixing T at T, one has to fix some-
thing else to get on a critical surface. It might happen
that there are more than one fixed point, or there are
important complex eigenvalues for R, in the linear ap-
proximation. Different possibilities in the behavior of
R, are expected to be consequences of different sym-
metry restrictions and other features of the parameter
space. It is extremely desirable to have more rigorous
work done to classify various possibilities., The diffi-
culty is mathematical complication, not in principle. In
principle, the renormalization group is well defined,
and can always be carried out approximately by numeri-
cal means. '
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IV. REPRESENTATION BY GRAPHS

To demonstrate some basic features of the renormal -
ization group defined above, the graph expansion is a
very useful formal device. In particular, the multiple
integral in (2. 18) can be formally performed at the ex-
pense of introducing an infinite number of graphs. In the
limiting cases where ¢ =4 ~d is small, or = is large,
the graph expansion becomes useful for calculation as
well.

A. Introducing graphs

The integrations over a virtually infinite number of
random variables ¢, are very difficult except when most
of these random variables are statistically independent,
i.e., when P is a product of distributions each involving
only one or two random variables, The graph expansion
starts with separating /4 into two pieces

H=7L/o+/'/1, (4. 1)
where
Ho=2 21 6 1°65'(%) (4.2)

is the m =1 term in (2. 12). We shall use the symbol
G;! for u,. The rest of /{ are included in /4,. if #, is
ignored, P cexp(— /—/0) is a product of independent
Gaussians since #, is a sum of quadratic terms. Aver-
ages are easily computed. For example,

(b 100=0,
(¢ik¢i-k>o'=fd¢¢h‘d¢,-k{exp[~ |¢ik|2/2co(k)]}'¢“|2
x{ [ dpwdd, expl- |0 ,,|2/2G,(R) ]} (4.3)
=G,(k),

where d¢,,dd, , means integrating over the complex bin
plane. Note that ¢}, =¢,_, [see (2.6)], so that ¢,, and
¢,., are not independent complex variables. They are
combinations of two real, independent random variables
Re¢,, and Im¢,, . We shall always denote such Gaussian
averages by the subscript 0.

Now we write
exp(—#H)=exp(- H,) exp(- H4,), (4.4)
and any average (A) over the full distribution becomes

(A)=(exp(~ H)A)o exp(~H)o

=2 El e/ S e 4.5)

Let us assume that A, as well as ;L/,, are sums of pro-
ducts of the ¢,’ » 8. Since the Gaussian average of a pro-
duct of ¢,’s is a product of pairwise averages [each ¢ i
has to pair up with ¢,_, to give (¢,,0, )0 = G,(#)], the
numerator and the denominator of (4.5) are comphcated
sums of products of G,(k)’s. To introduce graphic. rep-
resentations, it is more convenient to use the random
variables ¢(x) [see (2.14)], instead of ¢,’s, because the
coordinate space is easier to visualize. The Gaussian
average of a product of ¢(x)’s (with different x’s in
general) is a sum of products of pairwise averages
since ¢(x) is a linear combination of ¢,’s. Each pair
gives, writing (27 [ d¢k for L3, ,,
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(6,(x)0,(¥"))o=(27)* [ dkG,(F) explik - (x - x")]5,,
=Golx - x")5,,, (4.6)

which can be represented by drawing a line between x
and x’,. Various averages can then be represented by
graphs. As an illustration, suppose that

A =(,)9,(0)=C),

(4.7
Hy=(u,/2) [ dix[o?(x) ],
where
6%(x) =4 2 63(x). (4.8)

=1

Then (4.5) is a power series in «,. To zeroth order in
u,, we simply have G(y)=G,(y). To first order, we have
an additional term

—u(zn+1) [ d%'Gy(y - x7)Gyx — x')Go(x") 4.9

as represented by Fig. 3(a). We use a dashed line for
u, only to separate the two ¢2(x) factors in (4.7). The
second-order terms are given in Fig. 3(b). Those
readers who are not familiar with graphs should write
out the second-order terms explicitly. Note that dis-
connected graphs appear both in the numerator and in
the denominator of (4.5). The net result is that only
connected graphs contribute to {(4). Note also that if A
is of the form A,A,...A  then there will be discomnect-
ed graphs of the form (4,4,...4,) (4, ;... A ) provided
that neither of the two averages vanishes. The coordi-
nate representation is useful only for visualization. In
practice, the wavevector representation is more con-
venient. Any random variable A to be averaged over

is regarded as a product of ¢,’s. So are powers of # !
as given by (2. 12). Every line in a graph will be labeled
by a wavevector. The sum over wavevectors is now a
well defined integral in % space. In each graph, those
lines whose wavevectors are integrated over will be
called internal lines. Those lines with wavevectors
tixed by the ¢,’s in A will be called external lines.

~ / \ ':

FIG. 3. Examples of graphs for G: (a) Ol terms [see (4.10)];
(b) O(u}) terms.
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Of great importance is the “linked cluster theorem, ”
which says that

(exp(= H, ) = exp{exp(=#,) = 1], (4.10)

where the subscript ¢ denotes the sum of connected
graphs only. The disconnected graphs are generated
by exponentiation. The proof is left as an exercise in
counting graphs,

A frequently occurring phrase is the “self-energy ”
%~ defined by

G (k) =G5'(k) + (k). (4.11)

The self-energy graphs are simply those graphs of G(k)
with G, lines of wavevector identical to k& dropped.

What we have just gone through is the same as the
Wick’s theorem and Feynman graph expansion in field
theory, if the time variable there is taken as imaginary
and counted as a space dimension.

B. The muitiple integral

The multiple integral in (2. 18) is the first step in
defining R_. Let us denote those random variables to be
integrated over by ¢ and those not to be integrated by
¢. To save writing, we shall introduce the notation

f b= {,AI/Is<k’<A f W - #.12)
We shall also write (2. 12) as a sum:
H=H () +H (o, $), (4.13)

for the / in (2. 18). Here H(¢) is the part depending
only on ¢, and //(¢, ¢) depending on both ¢ and ¢. More
explicitly, //(¢) is given by (2.12) with all wave vectors
restricted to less than A/s, and 4 (¢, @) is the rest. The
graphic representation of [ 6¢exp(~#) can be introduced
as we did previously. Similar to (4.1) and (4.2), we
write

Hid, ) =Ho() +H,(9,9), (4.14)
Hol®)=, 23, 21 |6,,|°G3 (). (4.15)

We then define the Gaussian average by dropping 4, as
before:

(Ays= [ 5pAexpl-Ho(®)l/[ 66 expl-H(®)].  (4.16)

The additional “bar” in the subscript of (- - ); denotes
that the average is taken over the random variables ¢.
Then the multiple integral in (2.18) can be written as

[ o6 expl— () - H($, )]
= expl - H(9) Kexpl- (¢, $)Ds
Xf 6?6 eXp[—/v’o@)]-

The last factor is a constant independent of ¢. The
average in the middle of (4.17) can be expanded and
represented by graphs:

(4.17)

(expl- (0, )= T, T (Hr(6, )
= exp((expl - H,(¢, )] - e, (4.18)

where the last line follows from the linked cluster
theorem (4. 11). Remember that ¢ denotes the random
variables ¢,, with A/s <Ek'<A. Thus, the internal lines
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in the graphs now have wave vectors ranging between
A/s and A in magnitude, i.e., wave vectors in a “shell”
in % space. Now we substitute (4. 18) and (4. 17) in

(2. 18), we obtain /4’ apart from an additive constant

H =[H(9) = expl - Hy(®, )] = Dsel v a o, (4.19)
This is then the graphic representation of (2.18).

C. The change of scale; R; defined graphically

The new parameters p’ =(G§™,uj, ul, *+ +) are now
available in (4. 19). For clarity, we shall extract u’ in
two steps. First, let us write what is in the square
bracket of (4.19) as

H(®) = (expl~H($, d)] - 1)s,
=§a |¢{kl2(661+23)+mz:2L'(m-1)d Z; Z}

kl"'kZm-l il""Zrn

XP (4. 20)

i.e., we made an expansion in powers of unintegrated
random variables. The wavevectors in (4. 20) all have
magnitude less than A/s. In terms of graphs, T, is the
self-energy, i.e., sum of all graphs (connected, of
course) with two external lines, and %,,, is the sum of
all graphs of 2m external lines. All internal lines of
these graphs have wave vectors in the shell A/s<k' <A,
while all external lines have wave vectors restricted to
E<A/s.

¢ Ums

i2mRogm

The second step is to replace ¢, by ¢, and write
sL’ for L, s'*/?" for a_ [see (2.27)] in (4.20). We obtain

Hrz E |¢ IZG;-1+ ZLI-(m-l)d E
ik ik 9 m=2

Ryecckam-1 10 tizm

x¢i,k1' : '¢52mk2,,;uém’ (4.21)
Ge =[G5H(k/s) +T,(k/s)]s*, (4.22)
uémz,ﬁzms-(m-l)hm@-n)' (4. 23)

The quantity %,,, given by (4. 20) of course depends on

By v ky,;. In(4.23), it is understood that they are re-
placed by &, /s k,, /s, like the & in (4.22). Now in
(4. 21) the wave vectors range from 0 to A in magnitude,
but, as mentioned before, the density of points in &
space is decreased from L4(27)¢ to L' 4(27)"%. We now
have a system of a smaller volume.

From i =(G3!, u,,us,* + ), which defines // via (2.12),
we have arrived at (4.23) giving p’ by carrying out
(2.18). We have thus established u’=R_y in terms of
graphs.

D. The exponent 7, and self-energy

In Sec. IIC we define n with respect to a fixed point
u*. We shall now observe a simple relationship between
7 and the derivative of the self-energy at the fixed point.
Since R u*=p*, it follows from (4.22) that

GFUR) =[G (k/s)+TX(R/s)]s>™. (4.24)
We expand G¥~'(k) in powers of k:
GFHR)Y =13+ + v}t +. . | (4.25)
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We can always choose the unit of & such that r*=1. Let
us expand =¥(k) also,

oz? 2
TXR)=Z*0)+|—=3) R+--- (4.26)
s s ak =0
and define
Z¥1=1+ (az:) ) (4.27)
s akz k=0
Then (4.24) reads
X+ R+ =(tX+TX(0) + BPs2Z ¥ + - - - )s?, (4.28)
Thus,
=0 +=X0)s*, (4.29)
Z¥=s". (4. 30)

Therefore, 11=0 only if Z*=1, i.e., if £X(¥%) is inde-
pendent of k.

E. The case where {¢ (x))#0

In this section we have assumed that {(¢(x))=0. If
there is an external field or in the case p gets below
the critical surface (¢, <0), this would no longer be true,
and the graphs will have some additional features which
can be easily included.

V. THE FIXED POINT IN THE LARGE n LIMIT

So far our discussion has been abstract. Important
conclusions in Sec. III are qualitative and not yet sub-
stantiated. In fact, no explicit example of R, has been
given. In the following sections, we shall illustrate all
of what we have said about the renormalization group by
explicit calculation for the case of large n. Our analysis
will be exact in the large-» limit, i.e., terms neglected
are of O(1/n) compared to terms kept. Of course, our
results will not constitute any general proof but will
only serve as an example illustrating the ideas and
qualitative conclusions explained before.

Our presentation might look somewhat unnatural to
some reader, but it is designed to minimize mathemati-
cal complexity at the beginning. This section is devoted
to the fixed point only. Everything else comes later.

We shall assume in this section and the next that
M={p(x))=0 to avoid complication in discussion. As
far as conclusions about the renormalization group is
concerned, whether M =0 or not is irrelevant as we
mentioned earlier. Our results on R, in this section and
the next will be valid both above and below the critical
surface.

A. Generalization of the fixed point

Instead of solving the equation R u* = u* for the fixed
point p*, we shall show first that p* is easily generated
by the limit

lim R, =p*

s~ ®

(5.1)

provided that u, is on the critical surface. The reason
that we use (5.1) to find p* is that a simple u, can be
found easily and the procedure itself serves to illu-
strate the simplifying features of the large » limit.
Consider the probability distribution P«<exp(—#4),
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7L/: kz;i |¢ik|2G61 +L’d E iEj ¢ik1¢”¢1'k¢ jkzd) jk2+k"4/8,

kykok
(5.2)
where
Gl=t,+F - (5.3)

and ¢, u, are assumed to be constants. The point u, in
the parameter space defined by (2. 12) is then

u1=((;51,u4,0,0,0,---). (5-4)

Note that we have changed the definition of #, in (2. 12)
slightly in including and 1/8 in (5.2). In terms of ¢(x)
defined by (2. 14), the second term in (5. 2) is simply

(u,/2) [ d?x[o%x) P, (5.5)
where
$2(x) E%; $3(x). (5.6)

The reason for the factor 3 in (5.6) is that in graphs a
line can start from either factor of ¢3(x) thus requiring
the multiplication by 2, and the factor 3 then removes
this 2. In the large » limit, graphs with the maximum
number of closed loops dominate because every loop in-
volves a summation over ¢ and therefore a factor =.
Figure 4 shows several graphs for the self-energy of
order u#5. Graphs (a) and (b) are proportional to ui®
while (¢), (d), (e) are proportional to u3n?, udn, and u,
respectively. Clearly, the dominating self-energy
graphs of order u! are proportional to #!n' and are ob-
tained from lower order ones by adding a loop whenever
a dashed line is added. Graphs so generated are called
“tree graphs.” A tree graph can be separated into two
disconnected pieces by removing one dashed line. We
can choose units such that u, = O(1 /). This way, the.
tree graphs for the self energy are of O(1). Other
graphs are of O(1/n) or smaller.

The most important simplifying feature of the tree
graphs is that the self energy graphs are independent of
the external wavevector. As a result, we have

n=0, (6.7

(d) {e)
FIG. 4. Some self-energy graphs.
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in the large # limit, according to (4. 30) and (4.27). The
tree graphs for the self-energy T are summed easily
by solving the following equations:

G, 1) =G (k)

=1, +Z + K, (5.8)
T=u,N, (5.9)
N=(Q27)4 [ d% G(p)
=(/2)K, [} dpp* (t, + T + )7, (5.10)
where
K,=2"4/2 /1(d/2), (5.11)

and we have set the cutoff A=1 to simplify writing.

Let G'(k) denote G(k, p./)=G(k, R,u,). Since =0, we
have

G RY=1+Z'(N') + R

=sG(k/s), (5.12)
according to (2.28), and we defined
N'=(n/2)K, [ dppG(p)
=(n/2)K, [ dp p**s?G(p/s)
=n/DK,s* [ dp p*G(p). (5.13)

It is important to note that ='(N’) is not #,N’. It has the
more complicated form'?

DN = 20 o NT™, (5.14)
m=1

where u},..,, Will be determined in terms of «, later.

If u, is on the critical surface, we have G*(0)=0,
i.e., G(p)=p%, and

N=Nc= (n/Z)Kd f(;l dppd'lp-z
=(n/2)K,/(d-2),
lo+ =ty +uN, =0.

(5.15)

This gives the condition for u, to be on the critical sur-
face. The simplicity of (5. 15) is peculiar to the large »
limit, where N=N_ for all i on the critical surface. It
will be clear later that ¢, + = =0 implies (3.20). To
determine ¢, we obtain from (4, 22)

th=(t, +3=,)s?,
(5.16)
Es=u4Ns,

1

_r 11

Ns—'de'll‘/ dpp t0+23+P2.
s

(5.17)

Equation (5. 17) is the same as (5. 10) except that p is
restricted to 1/s <p <1 in (5.17). Its solution gives the
sum of tree graphs for the self-energy with internal
line wavevectors so restricted. As s -, G§?* - G¥*!
=¥+ k. Equation (5.17) is not convenient for taking
the s —« limit. Let us subtract 1/p? in the last in-
tegrand of (5.17) and add

(n/2)K, ff/s dpp?p?=(n/2)K (1~ s> /(d-2) (5.18)
to balance the subtraction. We then obtain
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(5.19)
after dividing (5. 17) by s***N_. N, is given by (5. 15).
From (5.15) and (5. 16), we obtain
1=ty +u,N )s?
=1,(1=N,/N)s?. (5.20)

In the large s limit, #; —¢¥. Therefore, the left-hand
side of (5. 19) must approach zero as

ST [ty — (1% /t)st4 -0 (5.21)

as s -, Now the limit s —« for (5.19) is clear. We
write

1+ (d=2)(tr /2)&(-1X,1,2 = d/2) =0. (5.22)

We have expressed the p integral in (5. 19) in terms of
the transcendental function & *3:

= [ 1 1 t* 7 expl-(1-d/2)x]
d-1 ——Y - e
j: PP (ta*+p2 pz)‘ 2fo R

*
- 52& & (—t;,", 1,2 - ‘21)
(5.23)
A useful series representation is!?
<I>(z,1,v):nz=%n+v . (5.24)

Equation (5. 22) determines f¥. For d=3, it reduces to
1=(~#¥)*/*tanh(- £3)' /2, (5.25)

which implies £ =-0.69. For large but finite s, (5.19)
tells us how ¢} approaches #¥:

th— 1% = st Hd - 2) + (4 = B)Y)
x(fl“’dp pd-l(tg +p2)-1)-1 + O(s"'s). (5_ 26)

Note that we start from p, to obtain (5.26). If we start
from some other point on the critical surface, the s
dependence will remain but the coefficient will be differ-
ent as will be seen later.

We proceed to find the remaining of u{=R_pu,, i.e.,
Usm1ys M=1,2,3,..., and then take the limit s - to
obtain u¥ ...

Figure 5(a) shows some graphs for u, to order 3.
The first two are proportional to #3»? and are the domi-
nating ones. Figure 4(b) shows some graphs for #} to
order #5. The dominating ones are proportional to 5%,
Generalization is clear: To order #}, the dominating
graphs for u},.,, are proportional to uln’"™. Since
u,=0(1/n), we have,

U (may = O0™). (5.27)
The dominating graphs are again tree graphs. They are
just those for =, with m pairs of external lines re-
placing m loops at ends of m branches. Equation (5.27)
also implies that
Wy, = O(0"™). (5.28)

Now the task is to sum tree graphs for u},,,,. Unlike
the graphs for T,, those for u},,.,, depend on wave vec-
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(a) L'J

(b)

FIG. 5. (a) Some graphs for uj of O(«}); (b) some graphs for
u} of 0(f),

tors of external lines, more precisely, on the wave
vectors of pairs. This wave vector dependence is weak
and is unimportant unless the wave vector of some pair
gets close to the cutoff. In computing the self-energy
Z'(N'), each pair is closed to form a loop so that only
the value of u},,.,, evaluated at zero wave vector is
relevant. We shall ignore the wave vector dependence
and regard u},,,, a3 a constant. This means we regard
U} (me1) @S @ local coupling, corresponding to a term

U imery | AU(S2N)™ / (m +1) (5. 29)

in #’. The numerical factor (m + 1) is designed to
make Z’(N’) look simple [see (5. 14)].

To determine u;,,,,,, we shall compute Z’(N’) and
identify the coefficient of N'™, instead of counting graphs

directly. Let us write the self-energy (5.9) as
T=u,N=u,(N, +N,), (5.30)

where we define N, N, by breaking up the integral in
(5. 10):

N,=(n/2K, [\ dppG(p), (5.31)
N,=(n/2K, [}'* dp p*G(p) = s*N". (5.32)

. The last equality in (5. 32) follows from (5. 13). Since
G(p)=(t, +u (N, +N,) +p°)!, N, clearly depends on N,.
So, let us write (5.31) as

Na =Na(Nb)
1
=2k, f dp pr- 1 = . (5.33)
2 s by +u,(N,(N,)+N,)+p
Note that
N,(0)=N, (5.34)

since we get (5. 17) by setting N, =0 in (5.33). From
(5.14) and (5.12), we obtain
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G HO) =8+ 2/ (N) =t + 23 tf (i N'™

— §2G™(0) = 2(t, + u,(N, +N,))

= 5%(ty +u, (N, (N's%%) + N's>°9)), (5. 35)

where we have written N’s*¢ for N, according to (5. 32).
We now expand the last line of (5.35) in powers of N/,
and identify the coefficient of N'™ as uj,.,,:

1 mepld”
U1y = — S a)[d_N_’; ]Nb:o. (5.36)

m! b
Here T means u,(N,(N,) +N,) with N (N,) defined by
(5.33). It is easy to visualize (5. 36) in terms of graphs.
Differentiation with respect to N, means converting a
close loop representing N, to a pair of external lines.
The self energy has'one pair of external lines. In (5. 36),
we open up m loops to get a total of 2(m + 1) external
lines. The factor s*m® {g in accordance with (4.23).
A neater formula can be obtained as follows. From
(5. 33) we obtain

N’Sz‘d:szN-—Na

1

1
r P D S
=N—2Kd dpp Pl

1/s
which is equivalent to the statement

(5.37)

—(d—Z)LSdppd'l(m-gg>, (5. 38)

where ¢’ is s3(¢, +«,N). This equation is taken as defin-
ing N and #' as functions of A, We shall always under-
stand the symbol # as #’(A). Equation (5. 36) now takes
the form

~ 1 dmtl
emey =N T (ﬁ‘)

The subscript 0 means setting A=0. In particular, #;
=1(0). By setting A =0 in (5. 38), we obtain (5.19). This
is expected since setting N’ =0 means N, =0 and hence
N=N, =N, [see (5.34)]. Equation (5.38) provides a
mathematical device for summing the tree graphs for

#} (1)~ It is important that N and # in (5. 38) must be
taken as functions of A, not as fixed quantities deter-
mined by (5.9). To sum up, we have carried out R, on
, and obtained p]. Equations (5.38) and (5. 39) give

U me1)- BY setting A=01in (5. 38), # is determined.

(5.39)

Now u¥...,, is readily obtained by taking the limit
s - of (5.38). The term s*(N(A)/N, - 1)s** vanishes in
this limit since u,=—1,/N,, " =s*(t, +u,N()) so that

SHN() /N, - 1)s% = = (' /1,)s%4. (5. 40)
Therefore the limit s — « of (5. 38) is
A=1+(d=2)t* ["dppt(t*+p?)?

=1+(d/2 -1)*e(-1*,1,2 -d/2), (5.41)

where /* means #*(1). The fixed point p* is then given
by

13 =1*(0) + O(n™), (5.42)
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-m_ 1 fdm* e
u2(m+l)‘—Nc m" (0m)o+o(n ™ l)- (5.43)

For finite but very large s, (5. 38) tells us how fast
R, i, approaches u*. We obtain from (5. 38)

("~ ) d =2) [ dpptt (e +p2)2
=¥t + (d = 2) /(4 — d))s®* + O(s*5). (5.44)

We thus observe the s behavior as we did before.

B. Some simple features of u *

Let us examine the exact results (5.41)~(5.43) more
closely. The probability distribution represented by u*
is P* « exp(=/*) with

H*=[ddx ((V¢)2+t*¢ (x)+2u2(w1)[__72n(_9_i_')_]T"‘*_1)

(5.45)

in the coordinate representation. We repeat some
definitions here:

¢,(x)= L2271 b, explik: x),

¢2(0)=32 [0, P, (5. 46)

/ERNL

[vo ().

1]

1
2

(Vo)

-

=1

The gradient term and ¥ term of course comes from
G¥' =¥ + F? and the form of the other terms has been
discussed before [see between (5.28) and (5.29)]. In
view of (5.42) and (5.43), we can write (5.45) in the
simple form by summing over m:

H*= [ a*x(V9)? + U*(¢%(x))], (5.47)
where the function U* is defined as
U (@?) =N, [, e ). (5. 48)

In other words, instead of specifying p* by an infinite
set of parameters, we can represent it here by a real
function U*. Some qualitative features of (1) and
U*(¢?) can be obtained easily. It is clear from (5.41)
that A ranges from -~ to © as * ranges from -1 to
, The integral is well defined for #* > -1, Also, we
have

*(1)=0 (5.49)
and for A— «, we have
A=1+T(d/2)T(2 - (d/2))p*¢/2=2 4 O(s*14/2-2) - (5,50)

which means

t*z(l‘(d/2)l§(2 ~d 2))2/(d-2)[1+0(x‘2’ @] (5.51)

for large X, According to (5. 48), we obtain

U*(9*) =N (d - 2)/dT(d/2)T'(2 - d/2))

X (¢? /N )/ @21 + O((p2/N )*/ @ )], (5.52)

for large ¢?/N,. With the information (5.49), (5.51),
(5.52), and t*(— =)= -1, the general shape of the curve
t* vs X and that of U*(¢?) vs ¢2 can be sketched. (See
Figs. 1 and 6.) For the case d=3, (5.41) is expressi-
ble in terms of elementary functions. We have
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A=1=(a/2)In[(1 +a)/1 - a)], for -1<t*<0,
=1+ atana, for t*>0, (5.53)
a= (|2,
Thus, for d=3,
U*(9?) =< ¢°, (5.54)

for large ¢2/N,.

The curves for U*(¢?) vs ¢2 are flatter as d—4 and
steeper as d —~2. They all have the general shape of
that obtained by Wilson? through numerical work for
d=3. In particular a ¢® behavior was observed in Ref.
2 also for large ¢2.

C. Limit of small ¢

Since our results are valid for arbitrary d between 2
and 4, we can easily extract the small e=4 —d limit. It
is convenient to use the series representation (5. 24) for
& in (5.41):

x=1+( )t*E( Ll

mon+e/2” (5.55)

The 2=0 term in the series dominates, when ¢ is small.
If we keep only this term, we get

t* =(e/2)(x = 1) + O(¢?), (5.56)
which means
tF=—(e/2) + O(e?), (5.57)
uf =N1e/2 + O(€?)
=167%/n + O(€?), (5. 58)
¢ [T 1]

- ] ! ]
0 ! 2 3
A
FIG. 6. Plot of t* vs A for d=2.2, 3, and 3.8. See (5.41).
Note that U* is obtained from #* by integration. See (5.48).
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FIG. 7. Graph representation of ug, ug, ug,***. See (6.1)—(6.4).

where N, is evaluated at d=4 via (5.15). These are the
large n limits of well known results.® The important
point is that u¥,,,, with m > 2 do not appear to this
order. It is easy to obtain from (5. 55) that

Uiy, =3¢ (=167 /)™ /(m ~ 1) + O(e™Y), (5.59)

for m>1.

VI. AWAY FROM THE FIXED POINT

In the previous section we determined R, for a
special u, [see (5.2)—(5.4)]. The reason for picking p,
instead of an arbitrary p is that yu, has a very simple
structure so that we could avoid mathematical compli-
cations which would have covered up the basic features
of interest. However, these complications will no long-
er be any problem once we have become familiar with
the basic features illustrated in the previous section,
We shall now generalize the previous results and deter-
mine p’ =Ry in the large = limit for any p of the form

Bo= (g, Uyy tgy* ** ) (6.1)
Note that we write simply {, instead of G5! =¢, +%® in

(6. 1) since the ¥* term never changes under R, for our
cases. All entries in (6. 1) are taken as constants. Thus,
L. specifies a probability distribution P «<exp(-#) with

H= [ dtx((99)* + U2, (6.2)
V9% = 108 + Xty +1). (6.3)

It is understood that f,=O(1), u,,.,= O(n"™). After
p’=R_p is determined, various consequences will be
discussed.

A. The transformation u' = R, u

The graphs representing u,, ug, u,* ++ are shown in
Fig. 7. This multitude of coupling parameters is the
major complication, which we avoided in the previous
section by dropping all but u,. However, the approach
we took in the previous section was so designed that its
generalization to include the new coupling parameters is
straightforward. In fact, we can simply copy the formu-
las there and replace T =u,N there by the more com-
plicated self-energy

Z(N):Euz(m”N’". (6.4)
The tree graphs here are taken to be those that fall into
two disconnected pieces when a dashed line is cut. The
tree graphs for the self-energy is summed by solving
the equations

N=(n/2)K, [ dp p"G(p),

G(p)=G(p, n)=[t, + (V) + p?1,

(6.5)
(6.6)
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together with (6.4), in the same way as solving (5.8)—
(5.10). Let G'(k) denote G(k, uu’')=G(k, R u) and let N’
and T/(N’) be defined by (5.13) and (5. 14). We now
write

N=N,+N,=N, +N’s*¢, (6.7)

with N, N, defined by (5. 31) and (5. 32) with G(p) given
by (6.6). The equality N,=N’s** still holds. The gen-
eralization of (5. 33) is now

N, (N = (n/Z)Kd flt . dp p*Ht, + =(N,(N,) +N,) +p2),
(6.8)

Since s*G™(0)=G'*(0), we have, similar to (5. 35),
5+ SN =85+ 23ty e N'™

=s?t, + S(N,(N's%"0) + N's?")], (6.9)

Provided that we use the new Z(N), the equations
(5. 36)—(5. 39) remain unchanged and p’ is thereby
determined.

We summarize the four steps of obtaining u’'=R_u:

{a) Given u=(f,,u,,u,,***) we construct

()= é Uy, N (6.10)
as a function of N,
(b) Define ¢’ as
' =s3(t, + =(N)). (6.11)

(c) Solve for N and hence # via (6.11) as functions of
A, t’{x) and N(1) from the equation

A=1+s3NQ)/N,=1)s?*+(d -2)¥ fl’ ap p3(t + pPy.

(6.12)
(d) Obtain R u =’ =(t§,ul, ul,+ ) from
#=1(0), (6.13)
1 [fd®v
“oamy =NT0T (W) (6.14

These four steps define L' =R_u regardless of whether
K, u' are above, on, or below the critical surface.

We can express Ry = (' as the transformation from
U(p?) to U'(¢?). U is related to u via (6.3). Write

t=t(N)=t, + SOV (6. 15)
then

UeI=N, [* " i, (6.16)
and

U =N, [* % o), (6.17)

with ¢’ obtained from (6. 12). Of course, u'=R u can
also be viewed as the transformation from ¢ to #.

B. The critical surface and the fixed point

We assert that the critical surface is given by the
condition G2(0, u)=0, i.e.,

ty= (1) =t, + (V)
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= tD + g.uz(wl)N’:
=0, (6.18)

This equation is a linear equation in (4, u,, %, ** +) and
defined a hyperplane in the parameter space. We need
to prove that (6. 18) implies (3. 20), that is, if ¢, =0
then R u approaches p* as s —«, Let us define

e=t()=s3(NQ) /N, -1) (6.19)

which appears in the second term of (6.12). Following
the notation (6. 15), we write (6.11) as

t'=s%t, + (N (1 + £/s9))]
=s(1+¢t/s%). (6.20)
If u satisfies (6.18), then (6.20) implies that for large s

t— ;(dt> +0(s™2), (6.21)

dr
where the subscript 1 means =1, Thus, for s—, {
is proportional to #, the second term of (6.12) thus
vanishes as s — % and the equation (5.41) for the fixed
point is obtained. Thus, our assertion has been proved.

C. Behavior of R; u for finite but large s

In view of our discussion in Sec. ITI, what is relevant
to the theory of critical phenomena is the behavior of
R_u for large s when u is on the critical surface or very
close to the critical-surface. \

Let us begin by writing (6.12) as
A=1+(d-2)¥ f:’ dp p*-3(t'+ pP) ,
+st e = (a=-2) [Tdppti( /s*+ 7)), (6.22)

where ¢ is related to #’ via (6. 20). Clearly, if ¢’'=t*,
(6.22) is satisfied without the last square bracket

s84[ ++ -] in view of (5.41). This square bracket vanish-
es, too, if #'=¢*, This statement is just saying that

R u*— p* for all s> 1, and is easy to see as follows.
Smce (5. 41) is true for any A, we can Set A=1+¢*/s?,
where £* is obtained from (6. 20) by setting ¢’ = t*,

K1+ ¢/s?)=1*(1+ t*/s?). We then obtain

1+ 0% /s? =1+ (d =2)(t%/s7) [ dppt=(% /s + ),
(6.23)

where we have written #*/s? for £*(1+ £*/s%). Clearly,
(6.23) says that the square bracket of (6.22) must
vanish if # =#*. In view of (5.41) and (6.23) we can
write (6.22) as

/1 1
-(d—2)f <—- - —) potap
N t’ +p2 t* +p2
® . 1
=—sd"*[§—§*—sz(d—2)f1 L0 Ty
- _1__)
/st +p2) |
Let us consider first the case where u is on the critical

surface, i.e., t, =0 [see (6.18)]. We then have, from
(6. 20),

(6.24)

v= () et1+0(e/57), (6.25)
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= (%)1 EH(1+ O(£*/59).

Thus,

(§—C*)(%t>l=t’—t* (d(tdxt )) +o< ) (6.27)

Substituting (6.27) in (6.24), we obtain, for large s
- [ f ® dp prN(t* + p?)"2 + O(stY)]

= sorp (M=) )>1/< )(d 2)(1+ 0(s"?).

It is then obvious that p’=R p approaches u* as fast as
sd-‘!.

(6. 26)

(6.28)

In Sec. III, the probability distribution for our spin
system at critical temperature is represented by a point
K(T,) on the critical surface. What (6. 28) shows is that
R p(T,) will approach the fixed point. No interesting
result appears for G(k, n(T,)) since we already know
that G(k, u)=k2 if u is on the critical surface because
only tree graphs have been included.

Next, we turn to the case where p is not on the criti-
cal surface, i.e., ¢, =#(1)#0, However, we shall as-
sume that #, is very small. While s will be taken as a
large number, we still want # to be of O(1). This is
always poss1b1e by makmg t, small. Just how small will
be clear later.

Similar to (6.25), we obtain from (6, 20)

= (8) ol
t~St1+<d)\>1§ 1+032 .

We can still solve (6.20) for ¢ by iteration even though
st ‘and hence ¢ can become very large, because {/s?
is proportional to #, which is assumed to be small, The
term O(t/s?) in (6.29) will therefore be small, and we
have

(6.29)

-k — o2 _‘.l_t. ’ (_ﬂ) - éf_) -
L ( 1(1+o(t1))+t/@1 w/(5), + o
(6. 30)

Substituting (6. 30) in (6.24), we obtain
| a1 1)
—(d-:a)f1 L iy t*+pz)

=s"'2t1/(%) (1+0(,)) + O(st), (6.31)

1

It is now clear that our assumption that #' = O(1) is valid
if we take 5%, to be of O(1). Now we want to solve
(6.31) for #'. 1t is sufficient for our purpose to know

that the solution is of the form
=F(z;7), (6.32)

z2=s%%,(1 + O(3,)) + O(s?Y), (6.33)

where F(z;\) is some complicated function with no ex-
plicit dependence on s or . Of course, if ¢, =0, (6.28)
should be recovered,

Let us write the equation G(k, 1) =G(sk, R u)s*"

G(k, 1)=sG(sk, t'). (6.34)
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Then we have
G(0, 1) = s2G(0, F(s272£, (1 + O(1,)) + O(s®"*);1)).
Setting s=1¢,1"1/ 2 we obtain
G(0,8)= |#,|"2/ ¢ G(0,F(1+ O(1,)) + O(| ¢, | 40/ @2)3),
(6. 36)

(6.35)

In view of our discussion in Sec. I, if p (or ¢) rep-
resents a probability distribution at T very close to T,
then T - T, is proportional to #.** Therefore, (6.36)
says that, for T—~T,

GO, u(T)) « | T =T, |2/ (6.37)
and hence
y=2/(d-2). (6.38)

As we mentioned in Sec. II, and shall see later, (6.36)
says only 0=0if T<T_ Notice that, in constrast to the
analysis in Sec. III, we have not introduced the linear
approximation here for R, near the fixed point. Nor do
we need the concept of eigenvalues and eigenvectors.
The factor s?2 plays the role of s*/ in Sec. III, and
s%* plays the role of s*2, The linear approximation tells
us what to expect and can certainly be carried out here
if desired., What we showed here by explicit construc-
tion of R, is that, at least in the large # limits, conclu-
sions of Sec. III are valid without linear approximation.

It is important to notice that the details of the coupling
parameters do not appear in our discussion. The re-
striction that u be close to the critical surface depends
on just one parameter, namely, f; being small. The
critical surface is thus a very enormous subspace of the
parameter space. The explicit demonstration of the fact
that R u approaches u* for large s for any u on the
critical surface is an illustration of universality. How
large s has to be so that R u gets close to p* is the
relevant information needed to determine the size of the
critical region mentioned in Sec. III. Equation (6.28)
gives some idea about the nature of this information. It
depends on the details of the parameters and very little
more can be said without explicit evaluation. One par-
ticular feature is that if (d(¢ — #*)/d)), vanishes, then
' —* becomes of O(s?™®), and the critical region be-
comes much larger. This feature will be discussed in
Sec. X in connection with the e-expansion of critical
exponents, The important point is that certain param-
eters are far more important than others in determin-
ing the size of the critical region, which cannot be
estimated by simply looking at the magnitudes of cou-
pling parameters and ask how far p is from p*.

In the above, we did not do our analysis in the most
general manner in the large » limit. For example, we
could have included another term in the parameter G3'
so that

GH(R) =t, + K* + ak? (6.39)

instead of just #,+ k2. It is left as an exercise for the
reader to show that the fixed point remains exactly the
same as before, The effect of ¢k* diminishes in R u as
s increases., Of course, the additional parameter a
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makes the critical surface and other details slightly
more complicated.

On the other hand, if the form of the cutoff is
changed, from our sharp cutoff [} /s @p to a smoothed
cutoff

[, dpexp(-p°){1 - expl~ (sp)°]}, (6. 40)

for example, there will be quantitative, not qualitative,
modifications on the fixed point and details of R,u. The
critical exponents will stay the same.

It should be noted that (6.39) and (6. 40) have very
different meanings. A change of cutoff given by (6.40) is
a quantitative change in the definition of the renormali-
zation group. Equation (6. 39) is just a modification of a
coupling parameter, not a change in the renormalization
group.

There is room for more work on the characteristics
of R u in the large n limit. For example, we have not
inquired into the question of whether equation (6.12) can
actually be solved for a general s. What happens if
there are multiple solutions? Would our conclusions for
large s, which were based on expansions in inverse
powers of s, remain valid in that case? More work will
be needed to answer these questions.

VIil. BROKEN ROTATION SYMMETRY IN SPIN SPACE

The average value of ¢,(x) is zero as a result of the
assumed rotation invariance in the n-dimensional spin
vector space of the probability distribution and the as-
sumption that p is above the critical surface. This
average value becomes nonzero when an external field
H [see (2.9)] is turned on. It can be nonzero also when
p lies below the critical surface even when H is turned
off. In the latter case, we have the rather striking
phenomenon that a rotationally symmetric probability
distribution produces apparently nonsymmetric average
values, This is, of course, the most conspicuous fea-
ture of a phase transition. In this section we discuss
cases with (¢)#0.

A. Transformation of 4 and M under R,

In defining the parameter space [see (2.12) and.
(2.13)], odd powers of ¢ were excluded. Now we in-~
troduce one more parameter H by adding to /# a term

H [ d% ¢,(x)=HL* %}, 7.1)

where ¢,, means (¢,,), .. The parameter H can be
identified as proportional to a uniform external field in
the 1 direction. (It should not be confused with a Hamil-
tonian.) It is easy to find out how H changes under R,
through (2. 18). Since ¢,, is never involved in the mul-
tiple integral, the only thing that happens is the re-
placement ¢, ~a ¢,,. Thus, in//’, there appears a
term
HL®/?s*/%¢ o =H'L'/?¢,,,

H' =gta-m/21p,

(7.2)
(7.3)

Recall that a,=s'""/2, sL’=L. We can therefore write
formally )

(H', u)=R(H, uy=(H',R 1), (7.4)
with H’ given by (7.3) and R,u defined previously, as
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the renormalization group transformation in the extend-
ed parameter space. The average “magnetization” M is
given by

M(H, “)=(¢1(x)>p=L-d/2<¢1o>p’ (705)

where P of course denotes the probability distribution
represented by (H, 1). We know that

(100 p=5"""Hb10) pr» (7.6)

where P’ stands for the probability distribution repre-
sented by (H’, p). [If (7.6) is not obvious, please go
back to the three trivial facts discussed at the beginning
of Sec. II. See (2.5) in particular. ] Substituting (7.6) in
(7.5), we obtain an equation analogous to (2. 28):

M(H, p.)=L"‘”zs'“zsl"’/2(¢m>p,
=M(H’, “I)s-(d+n)/2+1
=M(Hs(d-n) /2+1’ ul)s'(d+ﬂ)/2+l. (7.7)

Before we proceed further, let us emphasize the fact
that as long as M and H are uniform, the renormaliza-
tion group transformation i’ =Ry discussed previously
is not affected, regardless whether u is above, on, or
below the critical surface.

B. The exponents 6 and 3

If u= H(Tc) is a point on the critical surface, p’ will
approach p* for large s. If H is small enough (i.e.,
weak external field), we can choose

s=H-1@-m/zn? (7.8)
so that (7.7) becomes
M(H, (T ) =H/*M(1, p* + O e 12017)), (7, 9)

where

6=(d+2-m)/(d-2+m). (7.10)
In the limit of small H,
M«H/® (7.11)

which is the equation defining the exponent 3.

If H=0, and p is below the critical surface, we
choose s=|¢,|™ and obtain from (7.7)

M(p)= [, |*M(u* - e, + O(| £, | ")), (7.12)

B=%v(d-2+17). (7.13)
The exponent 8 is defined by M o< { T =T | #in the limit of
small |T =T below T,.

C. Correlation functions and susceptibilities

Although (7.3) and (7.4) are all we need to know about
the renormalization group in addition to what we should
know when H=0, a finite M clearly makes the physical
situation very different. An important difference is that
the rotation symmetry in the spin space is broken when
M=#0, and (2. 8) is no longer a convenient definition,

We defined the new random variable y,(x) by

¢, (x) =M + ¢y (x). (7.14)
For the Fourier component with =0, i=1,
L-¢/%p =M+ L/, (7.15)
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and ¢,,=49,, otherwise. Clearly, by definition,
(o»=0. (7.16)

We need to define two (longitudinal and transverse) cor~
relation functions now since the 1 direction is distinct:

Gy(ky b, HY={|®,,|%p, E#0, 7.17)
6,,G.(k, 1, H)=(,,0 , 0p, i,5%#1. (7.18)

When the symbol H is omitted, we shall mean H=0, By
G (0, u, H) we shall mean the limit £ — 0, not at 2=0,

If we add a small field 6H in addition to H, there will
be a OM in addition to M as a result. One easily obtains
similar to (2.10)

oM
G||(09 IJ"H) = (ﬁ) *
1

If the additional field is perpendicular to the original
field, say in the 2 direction, 6M would be also in the 2
direction. We have

oM
GJ_(O, “’H)=<ﬁ) .
1

The quantities (7.19) and (7. 20) are called the longitu-
dinal and transverse susceptibilities, respectively. We
note the important fact that applying a field 8H perpen-
dicular to the original field H is the same as rotating
the original field by a small angle 8H/H in the spin
space. Thus, the result must be rotating the original
M by the same angle since 1 is assumed to be invariant
under this rotation. We therefore conclude that

oM _ s

(7.19)

(7.20)

= (7.21)
which implies that (6H /6M), =H /M, and
G,(0,n,HY=M/H. (7.22)

This is a very important observation, for it fixes the
small % limit of the transverse correlation function.
When pu is below the critical surface, M #0 even when
H =0, Equation (7.22) asserts that in this case

G}(0, p)=0, (7.23)

i.e., the transverse correlation function must diverge
as k— 0. This statement is a form of the Goldstone
theorem often encountered in many-body theory and in
field theory.

D. The large nn limit

For an explicit illustration of the above discussion,
let us consider the large » limit with ¢, <0. As we men-~
tioned earlier, the structure of R, remains the same
apart from the additional equation (7. 3). Therefore,
what we want to illustrate is mainly the effect of finite
M on various averages. We shall assume that ¢, is
negative but small.

Note that there are n —1 transverse components
(:=2,3,...,n), but only one longitudinal ( =1). For
large n, close loops of transverse components dominate.

The transverse correlation function has the same
structure as G before except that an additional term
shown in Fig. 8(a) appears in the self-energy. Similar
to (6.5) and (6.6), we write
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FIG. 8. Additional self-energy terms when M =0. A wavy line
here denotes a factor of M. A dashed line here denotes a fac-

tor of u(N) =dt/dN [see (7.26)]. (a) The term for G, and (b) for
Gy.

{a)

G (R, t,H)=HN/N) + s M*u + 12, (7.24)

N=3(n - DK, [ dpp*G, (1, £, H), (7.25)
_at

”:”(N)=dN . (7.26)

Since ¢, is assumed to be small, M*< N,. We are
neglecting higher-order terms in M*/N,. Together with
(7.22), i.e.,

HN/N ) +3MPu(N)=H /M, (7.27)

solutions for N, M in terms of f and H can be obtained.
The factor (z —1) in (7.25) will be replaced by n.

For G,, there is still another term in the self-energy
as shown in Fig. 8(b). We have

G (k, t,H) =GY(k, t, H) +uM?[1 + (n/2)ull ()], (7.28)
where
(k) =(27)¢ [ d%G,(p, t, H)G (p+k,t,H). (7.29)

Consider first the case H=0. Then, by (7.27) and
(7.24), we have

G (B, D)=Fk"2 (7. 30)
Therefore, N=N_, and
(k)= [ dop(2m)*p(p+k)® (7.31)
=TI(1)2**(1 + O(k*"9)), (7.32)
where
n{(1y=JB(d/2 -1,d/2 - 1),
(7.33)

J=3K,m(d/2 - 1) /sinn(d/2 - 1),
and B is the beta function. Since N=N_, (7.27) gives
t1+%M2u(Nc)=O, (7.34)

which implies M« |¢,1*/2 and =% as (7.13) implies for
large n. Substituting (7. 30)—(7. 34) in (7. 28), we obtain,
for small k&,

_ _bagaa m_ fdt Y
Gk, t)= [tl 2 iV, ( dh>1r1(1)] + const, (7.35)
By (7.19), (7.35) implies that
511)
=2 =0 7.36
(6M W, H=0 ’ ( )

i.e., the H vs M curve at H=0 is flat.

We proceed to the case of nonzero but small H/M,
Then

G:l =H/M + ¥?
and therefore N is, by (7.25),
== (n/2)H/M)/3*J/d/2 - 1) +N_+ O(H/M). (7.38)

(7.37)

J. Math. Phys., Vol. 15, No. 11, November 1974

1885

Since d/2 -1>0, then (1/N)(N ~N) is small. We can
expand ¢ and « in (7.27) and obtain

t, +u(N )EM? ~ (H/M)* />N (n/2)J /(d/2 - 1)) + O(H /M) =0.
(7.39)

This is the thermodynamic equation of state relating H,
M, and ¢, « T - T, TI(k) becomes more complicated in
this case.? Let us just note that

T(0) = (B /M)*/22 + O(1) (7. 40)
and (7.28) gives
G,(0, ,H) = @g-)
_ 2%2 (92-4/2[“0(%)2-“2] . (1.41)

In conclusion, the presence of a finite uniform M does
not modify the idea or formulation of the renormaliza-
tion group in any essential way. On the other hand,
some of the important consequences of a finite M such
as (7.41) do not appear derivable from renormalization
group arguments alone. Such consequences obtained
here are general to the extent that no assumption is
made about the function #N, /Nc) which specifies the de-
tails of the interaction.

Discussions on critical exponents and the equation of
state below T to O(1/n) can be found in the work of
Brezin and Wallace. ?

VIH. THE FREE ENERGY

In this section we are interested in how the free en-
ergy transforms under the renormalization group. We
shall derive the transformations from our basic defini-
tion explicitly and examine the validity of the usual
scaling arguments. A study of free energy and correc~
tions to scaling laws assuming general transformation
properties has been carried out by Wigner. '3

The free energy per unit volume F(T) is defined by'®
exp[—L”F(T)/T]=O<H<A [ do expl-H(A)/T].  (8.1)
o

Clearly an additive constant in H(A) will make a differ-
ence in F, To apply the renormalization group to the
study of the free energy, one must specify the additive
constant in // so far ignored. We shall adopt the rule
that the additive constant is always written out explicitly
and symbols like /, 4’ will contain no additive con-
stant, i.e., #, /' are zero if ¢ =0. We now define

F=F (1) by

exp(—L"]):.-o(gAf do, exp(=#). (8.2)

Similarly we define 7’ =7(u’) by replacing in (8.2) # by
H', L7 by L’?}’ and keeping in mind that the density of
points in 2 space over which the product I1 runs through
is changed to L’4(27)™?, To relate 7’ to 7, we separate
the multiple integral in (8. 1) into two and write

exp(-FLY)= 1 [dp, 1 Aquﬁ,a,exp(—z‘v’).

O0<k<A /s A /s<Ri<

(8.3)

We then make the substitution ¢,-~a ¢ , for the second
(the left) set of variables and obtain
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exP(_jLa):oQItLA f ¢ska;1 [ /sI<Ik‘<A f dd)k,exp(—/-/)]

= N [ db,exp(-H")expl- L4 A +A,)]
0<R<A

=expl- L'¢7" ~ (A + A, L. (8.4)

We have applied the definition (2. 18) for exp(~#4"). The
constants A and A, are defined by

expl-L)=[, 0 [dbgemi-A)|, . @5)

where ¢,, 0<k<A/s, the unintegrated variables, are
set to zero, and

exp(~ LA o)_0<k<A/sa;l’
i.e.,
Ay=nK, [*7* ap pt[1 - (n/2)]Ins, (8.6)

since @,=s'"""/2, The additive constant A would be just
7 if all ¢, with 0<k<A/s were set to zero. 4, is to
compensate the change of the size of the phase space
produced by the substitution ¢ —~a ,¢$. We have therefore

Fu)=s"F(u)+A+A, 8.7

from (8.4). Now let H(A)/T be represented by u(7),
then the free energy is

F(T)=F(w(TNT. (8.8)
We obtain from (8.7)
Fw(T) =F (T

=" F (' (1) - F (T N +A(T) ~ A(T). (8.9)

For large s, u’(T,) approaches the fixed point p*. K
T - T, is very small, we choose

s=|t|”e«|T-T|” (8.10)
as was done in (3.13) and obtain from (8.9)
F () -F(u(T,)
= |t " F(u* ) - F(u*) + 0(| 1, | %))
+ (AT ~ AT )y = » (8.11)

where, in the argument of 7(u*+e,), the + and - signs
correspond to the cases ¢, >0 and ¢, <0, respectively.
In the small T - T, limit, we have’

F(T)~F(T )< |T - T,|"¢+ “less singular terms”
(8.12)

provided that the last two terms of (8.11) are truly less
singular. Note that 7(u* +e¢,) is expected to be different
from 7(p* - e,). Therefore the proportionality constant
in front of | T —T,1¥¢ in (8.12) for T> T, is different
from that for T<T_.

The last two terms of (8. 11), usually handwaved
away as nonsingular terms, deserve more attention.
They are the contribution from the ¢,’s with k> A/s as
(8.5) indicates. Equation (8.12) assumes that such con-
tribution is less singular compared to the contribution
from ¢,’s with k< A/s. The assumption is not obviously
v